【数据分析与科学计算可视化】numpy 和 matplotlib库总结
一、numpy库 numpy:科学计算包,支持N维数组运算、处理大型矩阵、成熟的广播函数库、矢量运算、线性代数、傅里叶变换、随机数生成,并可与C++/Fortran语言无缝结合。树莓派Python v3默认安装已经包含了numpy。 另: scipy:scipy依赖于numpy,提供了更多的数学工具,包括矩阵运算、线性方程组求解、积分、优化、插值、信号处理、图像处理、统计等等。 1.扩展库numpy简介 导入模板:(交换式) >>>import numpy as np 2.numpy库应用于数组 (1)简单数组的生成 >>>import numpy as np #把列表转化为数组 >>> np.array([0,1,2,3,4]) array([0, 1, 2, 3, 4])>>>np.array((0,1,2,3,4)) # 元组转化为数组array([0, 1, 2, 3, 4]) >>>np.array(range(5)) # 把range对象转换成数组 array([0, 1, 2, 3, 4]) >>>np.array([[1,2,3,4,],[5,6,7,8]]) #二维数组 array([[1, 2, 3, 4], [5, 6, 7, 8]]) >>>np.arange(8) # 类似于内置函数range() array([0,1,2,3,4,5,6,7]) >>