单目视觉标定原理
在计算机视觉中,通过相机标定能够获取一定的参数,其原理是基于三大坐标系之间的转换和摄像机的畸变参数矩阵。在实验中经常用张正友标定发,进行摄像机标定,获取到内参数矩阵和外参数矩阵以及畸变参数矩阵。在应用中要区分三者作用。这也是在程序中函数输入量。 一、三大坐标系 在计算机视觉中,利用图像中目标的二维信息获取目标的三维信息,肯定需要相机模型的之间转化。 1、图像坐标系 在计算机系统中,描述图像的大小是像素,比如图像分辨率是1240*768.也就就是以为图像具矩阵rows是1024,cols是768.那图像的原点是在图像的左上角。 以图像左上角为原点建立以像素为单位的直接坐标系u-v。像素的横坐标u与纵坐标v分别是在其图像数组中所在的列数与所在行数。这是像素坐标,而不是物理坐标,为了后续的模型转换,有必要建立图像坐标系。 图像坐标系是以图像中心为原点,X轴和u轴平行,Y轴和v轴平行。 dx和dy标示图像中每个像素在X轴和Y轴的物理尺寸,其实就是换算比例。比如图像大小是1024*768,图像坐标系x-y中大小为19*17.那么dx就是19/1024 . 则图像中的每个像素在u-v坐标系中的坐标和在x-y坐标系中的坐标之间都存在如下的关系: (上述公式中我们假设物理坐标系中的单位为毫米,那么dx的的单位为:毫米/像素。那么x/dx的单位就是像素了,即和u的单位一样都是像素) 为了使用方便