在Python中使用Numpy创建向量: x = np.array([1, 2, 3, 4]) 创建3 x 3矩阵 B = np.array([[1, 2],[3, 4],[5, 6]]) Shape形状,也可称为维度,表示矩阵中每个维度的具体数值; B.shape 3 x 2 转置 行向量可转置为列向量,列向量转置为行向量 如为方阵转置后行数列数不变,对于非方阵,2 x 3矩阵转置后为3 x 2矩阵 B_t = A.T 检查转置后形状shape B_t.shape 矩阵加法 矩阵相加为两个矩阵对应的元素相加; A = np.array([1,2],[3,4]) B = np.array([4,5],[5,6]) C = A + B = [[5, 7],[8, 10]] 如标量与矩阵相加规则为:标量与矩阵中对应的每个元素相加; 广播 广播为Numpy的机制,使得Numpy可以处理各个不同形状(shape)之间的操作,较小的阵列将会被扩充以匹配较大的阵列形状; 就如上面使用标量与矩阵做相加元素,实际上Numpy把标量转成了与矩阵相同维度的矩阵与该矩阵进行相加; 比如一个3 x 2 矩阵与一个3 x 1矩阵相加,Numpy会自动把3 x 1矩阵复制一列形成3 x2矩阵与该3 x 2矩阵相加,使得两个矩阵的shape能够匹配; 矩阵乘法 矩阵乘法与矩阵加法规则并不一样