动态规划0—1背包问题
动态规划0-1背包问题 Ø 问题描写叙述: 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应怎样选择装入背包的物品,使得装 入背包中物品的总价值最大? Ø 对于一种物品,要么装入背包,要么不装。所以对于一种物品的装入状态能够取0和1.我们设物品i的装入状态为xi,xi∈ (0,1),此问题称为0-11背包问题。 过程分析 数据:物品个数n=5,物品重量w[n]={0,2,2,6,5,4},物品价值V[n]={0,6,3,5,4,6}, (第0位,置为0,不參与计算,仅仅是便于与后面的下标进行统一,无特别用处,也可不这么处理。)总重量c=10. Ø背包的最大容量为10,那么在设置数组m大小时,能够设行列值为6和11,那么,对于m(i,j)就表示可选物品为i…n背包容量为j(总重量)时背包中所放物品的最大价值。 以下是自己写的源代码: #include<stdio.h> #include<stdlib.h> #include<iostream> #include<queue> #include<climits> #include<cstring> using namespace std; const int c = 10; //背包的容量 const int w[] = {0,2,2,6,5,4};//物品的重量,当中0号位置不使用 。 const int