贪心算法和动态规划算法
动态规划和贪心算法都是一种递推算法 即均由局部最优解来推导全局最优解 ( 不从整体最优解出发来考虑, 总是做出在当前看来最好的选择。) 不同点: 贪心算法 与动态规划的区别: 贪心算法中,作出的每步贪心决策都无法改变,由上一步的最优解推导下一步的最优解,所以上一部之前的最优解则不作保留。 能使用贪心法求解的条件 :是否能找出一个贪心标准。我们看一个找币的例子,如果一个货币系统有三种币值,面值分别为一角、五分和一分,求最小找币数时,可以用贪心法求解;如果将这三种币值改为一角一分、五分和一分,就不能使用贪心法求解。 例:贪心法标准的选择 设有n个正整数,将它们连接成一排,组成一个最大的多位整数。 例如:n=3时,3个整数13,312,343,连成的最大整数为34331213。 又如:n=4时,4个整数7,13,4,246,连成的最大整数为7424613。 输入:n 个数 输出:连成的多位数 算法分析:此题很容易想到使用贪心法,在考试时有很多同学把整数按从大到小的顺序连接起来,测试题目的例子也都符合,但最后测试的结果却不全对。按这种标 准,我们很容易找到反例:12,121应该组成12121而非12112,那么是不是相互包含的时候就从小到大呢?也不一定,如12,123就是 12312而非12123,这种情况就有很多种了。是不是此题不能用贪心法呢? 其实此题可以用贪心法来求解