线段树合并&&启发式合并笔记
这俩东西听起来很高端,实际上很好写,应用也很多~ 线段树合并 线段树合并,顾名思义,就是建立一棵新的线段树保存原有的两颗线段树的信息。 考虑如何合并,对于一个结点,如果两颗线段树都有此位置的结点,则直接合并两结点的信息(如维护最大值则取max,维护和则相加),然后递归处理左右子树; 若只有一个有,直接返回即可。 这样子做时间复杂度取决于重合节点个数,一次最坏复杂度是$O(nlogn)$,因为满二叉树的结点数是$O(n)$,对每个结点进行处理是$O(logn)$,但是实际应用中需要合并的两颗树重合部分一般较少,所以复杂度可以近似看为$O(logn)$的; 如果用动态开点线段树的话,一次合并只需要合并一条链,所以时间复杂度是$O(操作数\times logn)$的 启发式合并 启发式合并核心思想就一句话:把小集合的合并到大的里。 启发式合并思想可以放到很多数据结构里,链表、线段树、甚至平衡树都可以。 考虑时间复杂度,设总共有$n$个元素,由于每次集合的大小至少翻倍,所以至多会合并$logn$次,总的复杂度就是$O(nlogn)$的(结合线段树合并就是$O(nlog^2n)$的) 下面举几道例题: 【BZOJ1483】【HNOI2009】梦幻布丁 链表+启发式合并,每次换颜色直接合并 1 #include<iostream> 2 #include<cstring> 3 #include