pytorch加载模型时使用map_location来在CPU、GPU间辗转腾挪
假设我们只保存了模型的参数(model.state_dict())到文件名为modelparameters.pth, model = Net() cpu -> cpu或者gpu -> gpu: checkpoint = torch.load('modelparameters.pth') model.load_state_dict(checkpoint) cpu -> gpu 1 torch.load('modelparameters.pth', map_location=lambda storage, loc: storage.cuda(1)) gpu 1 -> gpu 0 torch.load('modelparameters.pth', map_location={'cuda:1':'cuda:0'}) gpu -> cpu torch.load('modelparameters.pth', map_location=lambda storage, loc: storage) 来源: CSDN 作者: 羊城迷鹿 链接: https://blog.csdn.net/jining11/article/details/103825447