axis

Drawing average line in histogram (matplotlib)

╄→гoц情女王★ 提交于 2019-11-29 20:34:43
I am drawing a histogram using matplotlib in python, and would like to draw a line representing the average of the dataset, overlaid on the histogram as a dotted line (or maybe some other color would do too). Any ideas on how to draw a line overlaid on the histogram? I am using the plot() command, but not sure how to draw a vertical line (i.e. what value should I give for the y-axis? thanks! You can use plot or vlines to draw a vertical line, but to draw a vertical line from the bottom to the top of the y axis, axvline is the probably the simplest function to use. Here's an example: In [80]:

Axis error about runtime location

泪湿孤枕 提交于 2019-11-29 19:11:46
问题 The error is: Exception occurred while reading or writing file {0}The Axis2 facets cannot be installed since the Axis2 runtime location has not been set. Go to the Web Services preference page and set the Axis2 runtime location under Axis2 Preferences. In the preferences mentioned, the location is set correctly and in fact, it says "Axis2 runtime loaded successfully" after loadign the correct runtime location. So what's going on? Any solutions other than re-installing eclipse or creating a

opengl rotation problem

二次信任 提交于 2019-11-29 16:53:15
can anyone tell me how to make my model rotate at its own center go gravity in stead of the default (0,0,0) axis? and my rotation seems to be only going left and right not 360 degree.. If you want to rotate an object around its center, you first have to translate it to the origin, then rotate and translate it back. Since transformation matrices affect your vectors from right to left, you have to code these steps in opposite order. Here is some pseudocode since I don't know OpenGL routines by heart: PushMatrix(); LoadIdentity(); // Start with a fresh matrix Translate(); // Move your object to

Python:axis=0 axis=1的理解

断了今生、忘了曾经 提交于 2019-11-29 16:42:27
官方文档解释: 轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。 注意看,官方对于0和1的解释是轴,也就是坐标轴。而坐标轴是有方向的,所以千万不要用行和列的思维去想axis,因为行和列是没有方向的,这样想会在遇到不同的例子时感到困惑。 根据官方的说法,1表示横轴,方向从左到右;0表示纵轴,方向从上到下。当axis=1时,数组的变化是横向的,而体现出来的是列的增加或者减少。 其实axis的重点在于方向,而不是行和列。具体到各种用法而言也是如此。当axis=1时,如果是求平均,那么是从左到右横向求平均;如果是拼接,那么也是左右横向拼接;如果是drop,那么也是横向发生变化,体现为列的减少。 当考虑了方向,即axis=1为横向,axis=0为纵向,而不是行和列,那么所有的例子就都统一了。 举例: 该函数返回的是数组中最大值的索引值 >>> a = np.arange(6).reshape(2,3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> np.argmax(a) 5 #这里的5表示的是第5下标的元素 >>> np.argmax(a, axis=0) array([1, 1, 1]) >>> np.argmax(a, axis=1) array([2, 2]) 来源: https://blog

8.支撑向量机SVM

蹲街弑〆低调 提交于 2019-11-29 16:11:34
1.什么是SVM 下面我们就来介绍一些SVM(Support Vector Machine),首先什么是SVM,它是做什么的?SVM,中文名是支撑向量机,既可以解决分类问题,也可以解决回归问题,我们来看看它的思想是怎么样的。 这是一个简单的分类问题,我们很容易想到可以找一个决策边界,那么在决策边界上方的分为红色的点、下方则分为蓝色的点。可以这个决策边界选在什么地方好呢? 可以看到图中两个蓝色的线,都可以叫做决策边界,对于这种决策边界不唯一的问题,通常叫做不适定问题。可以回想一下逻辑回归是如何解决不适定问题的,逻辑回归是定义了一个概率函数,也就是所谓的sigmod函数,根据这个概率函数进行建模,形成了一个损失函数,我们最小化这个损失函数,从而求出一个决策边界,这就是逻辑回归的思路。 支撑向量机的方法稍微有一些不同,假设我们以上面那根蓝色的线作为决策边界的话。显然非常好的将我们的训练数据集分成了两部分,但是我们在意的是在测试集、也就是未知的数据表现的怎么样,也就是模型的泛化能力如何。是否能很好的得出那些未知的数据的分类结果呢? 比如又来了一个新的点,根据决策边界我们可以得出,这个点是属于蓝色的点,但是我们发现把它归为红色的点更好一些,显然它距离红色的点更近一些。但是之所以会出现这个结果,是因为决策边界距离红色的点太近了。所以我们说找到的这个决策边界泛化能力太差了。

Defining bin width/x-axis scale in Matplotlib histogram

我与影子孤独终老i 提交于 2019-11-29 15:47:17
I am generating histograms with matplotlib. I need the bins to be of unequal width as I'm mostly interested in the lowest bins. Right now I'm doing this: plt.hist(hits_array, bins = (range(0,50,10) + range(50,550,50))) This creates what I want (the first 5 bins have a width of 10, the rest of 50), but the first five bins are, of course, narrower than the latter ones, as all bins are displayed on the same axis. Is there a way to influence the x-axis or histogram itself so I can break the scale after the first 5 bins, so all bins are displayed as equally wide? (I realize that this will create a

Ignore certification authentication on Axis client for WCF service

蹲街弑〆低调 提交于 2019-11-29 15:40:31
问题 I created an axis client to WCF service (the client was generated by Eclipse, using the WSDL as an input). The client works fine when using HTTP. When using HTTPS I'm getting the following exception: javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target I understand the error, but I don't want to give it a place where the

Break Y-Axis in ggplot2

最后都变了- 提交于 2019-11-29 15:30:35
This is like a similar question that I posted two years ago. I have the following dataset. dat <- read.table(header=TRUE, text=" Age ColA ColB ColC ColD ColE ColF ColG 15-19 0.02307186 1.222808596 8.029007382 2.37640161 2.999341838 7.221492272 1.015161853 20-24 0 0.887751986 4.688258856 1.195273916 1.618841858 3.864332176 0.591834658 25-29 0.009286236 0.515386108 3.459122975 0.807902547 1.095775869 2.88801945 0.394665037 30-34 0.004488001 0.529584108 2.948616603 0.888624182 0.825792169 2.517768515 0.296208061 35-39 0.004255158 0.421260643 2.416929748 0.642528859 0.710611387 2.119068688 0

could not find deserializer for type : Error

可紊 提交于 2019-11-29 15:18:00
I have to make a SOAP call from my java program ,for which I used apache axis. My program is as follows : import org.apache.axis.client.Call; import org.apache.axis.client.Service; import javax.xml.rpc.ParameterMode; import javax.xml.namespace.QName; public class Project { public static void main(String [] args) { try { String endpoint ="http://RequestUrl"; Service service = new Service(); Call call = (Call) service.createCall(); call.setTargetEndpointAddress( new java.net.URL(endpoint) ); call.setOperationName(new QName(endpoint, "getFrsFileData")); String value = (String) call.invoke(new

数据分析之numpy

好久不见. 提交于 2019-11-29 14:46:34
一、NumPy Ndarray 对象 NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。 ndarray 对象是用于存放同类型元素的多维数组。 ndarray 中的每个元素在内存中都有相同存储大小的区域。 ndarray 内部由以下内容组成: 一个指向数据(内存或内存映射文件中的一块数据)的指针。 数据类型或 dtype,描述在数组中的固定大小值的格子。 一个表示数组形状(shape)的元组,表示各维度大小的元组。 一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。 numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0) """ object 数组或嵌套的数列 dtype 数组元素的数据类型,可选 copy 对象是否需要复制,可选 order 创建数组的样式,C为行方向,F为列方向,A为任意方向(默认) subok 默认返回一个与基类类型一致的数组 ndmin 指定生成数组的最小维度 """ View Code 二、Numpy数据类型 numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上