axis

Ignore certification authentication on Axis client for WCF service

╄→гoц情女王★ 提交于 2019-11-30 10:04:58
I created an axis client to WCF service (the client was generated by Eclipse, using the WSDL as an input). The client works fine when using HTTP. When using HTTPS I'm getting the following exception: javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target I understand the error, but I don't want to give it a place where the certificates are located. I want to tell Axis to avoid this step (accept any certificate without

rotate X axis labels 45 degrees on grouped bar plot R

蓝咒 提交于 2019-11-30 08:30:51
问题 How can I rotate the X axis labels 45 degrees on a grouped bar plot in R? I have tried the solution suggested here but got something very messy, the labels seem to have been added multiple times (only showing the axis part to protect data privacy): This solution (gridBase) was also unsuccessful for me, for some reason I get the following error: "Cannot pop the top-level viewport (grid and graphics output mixed?)" PS. Most people seem to recommend this solution in R base but I am stuck with

How to use the webservice-client classes generated with Eclipse?

こ雲淡風輕ζ 提交于 2019-11-30 07:05:47
I used eclipse Helios to create a Web Service Client for consuming an axis 1.4 web service. It generated 2 packages: 1 - datamodel. 2 - client. Inside client package there are 5 classes: 1- ServiceName 2- ServiceNameProxy 3- ServiceNameService 4- ServiceNameServiceLocator 5- ServiceNameSoapBindingStub I need to Know what are these ? AND How to call the web service methods with parameters? Thanks in advance bmeding I am very new to Web Services and I can't give a good explanation of what those classes are, but, I believe you can use the Proxy class to call the Web Service methods. public class

Marlin固件运动控制代码分析

帅比萌擦擦* 提交于 2019-11-30 06:13:24
实验测试 //当对每个线性移动 '标称' 值的设置进行缓冲时, 将使用此结构, 因为在源 g 代码中已指定, //如果加速管理处于活动状态, 则可能永远无法实际达到。 typedef struct { // 由bresenham 算法用于跟踪直线的字段 long steps_x , steps_y , steps_z , steps_e ; // 每个坐标轴所需走的步数 unsigned long step_event_count ; // 完成这个block所需走的步数,steps_x, steps_y, steps_z, steps_e的最大值 long accelerate_until ; // 梯形曲线中的加速距离,单位steps long decelerate_after ; // 加速和匀速的距离,单位steps long acceleration_rate ; // 加速率,用来计算加速度 unsigned char direction_bits ; // 这个block的方向位,“1”反向,“0”正向,每一个位代表一个轴的方向 (refers to *_DIRECTION_BIT in config.h) unsigned char active_extruder ; // 所用到的有效的挤出头 # ifdef ADVANCE long advance_rate ;

deploy war file in tomcat server

风流意气都作罢 提交于 2019-11-30 04:46:41
I have copied the sample.war file in webapps directory of tomcat. I can acess localhost:8080. deploying of wars is automatic by default -i have checked my webapps folder for an extracted folder "sample" but it is not extracted.why the war file is doesn't extracted.please give me solution for this. Delete that war file from webapps/ directory. Then open link http://localhost:8080/ in your web browser. Click Tomcat Manager then enter user name and password. In next page you can see one option called "WAR file to deploy" . Select your war file from there and click "deploy" button. If you want

pandas 学习 第5篇:序列的处理(重复值、重索引、选择、阶段)

两盒软妹~` 提交于 2019-11-30 03:53:02
对序列的处理, 一,删除序列中的重复值 当序列中存在重复值时,可以删除重复值,使序列中的值是唯一的: Series.drop_duplicates(self, keep='first', inplace=False) 参数keep:有效值是first(保留第一个,删除后面出现的重复值),last(保留最后一个,删除前面出现的重复值),false(不保留,把重复的数据删除),默认值是保留第一个, >>> s=pd.Series([1,1,2,3,4,4,5]) >>> s.drop_duplicates() 0 1 2 2 3 3 4 4 6 5 dtype: int64 二,标记序列中的重复值 把序列中出现重复值的位置用True来标识: Series.duplicated(self, keep='first') 三,选择序列中的元素 从序列中选择前n行、后n行、任意连续位置的数据 Series.head(self, n=5) Series.tail(self, n=5) Series.take(self, indices, axis=0, is_copy=False, **kwargs) 参数注释: indices:一维数组,用于表示axis的序号,如果axis=0,那么indices表示的是索引 axis:0表示索引,1表示列(columns),对于序列,axis的值只能是0.

d3.js - evenly spaced bars on a time scale

我的梦境 提交于 2019-11-30 00:29:20
问题 I'm building a bar plot in d3.js in which each bar represents total TB cases during a month. The data essentially consists of a date (initially strings in %Y-%m format, but parsed using d3.time.format.parse) and an integer. I'd like the axis labels to be relatively flexible (show just year boundaries, label each month, etc.), but I'd also like the bars to be evenly spaced. I can get flexible axis labeling when I use a date scale: var xScaleDate = d3.time.scale() .domain(d3.extent(thisstat,

python matrix to rotation

℡╲_俬逩灬. 提交于 2019-11-29 23:59:28
# # -----------------------Rotation----------------------------------------- # import warnings # import numpy as np # import re # _AXIS_TO_IND = {'x': 0, 'y': 1, 'z': 2} # def _elementary_basis_vector(axis): # b = np.zeros(3) # b[_AXIS_TO_IND[axis]] = 1 # return b # def _compute_euler_from_dcm(dcm, seq, extrinsic=False): # # if extrinsic: # seq = seq[::-1] # # if dcm.ndim == 2: # dcm = dcm[None, :, :] # num_rotations = dcm.shape[0] # # # Step 0 # # Algorithm assumes axes as column vectors, here we use 1D vectors # n1 = _elementary_basis_vector(seq[0]) # n2 = _elementary_basis_vector(seq[1]) #

如何训练inception网络

痞子三分冷 提交于 2019-11-29 23:45:29
其实我写的有点害怕,因为我不知道我做的对不对,电脑的GPU不行,只跑出了两个epoch的结果就跑不动了,我也不知道是不是程序真的有问题,嗯,我就是一个傻狗屌丝女。先将inception_v3原来的模型放进来用来获取logits。 from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from VGG16 import inception_utils slim = tf.contrib.slim trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev) def inception_v3_base(inputs, final_endpoint='Mixed_7c', min_depth=16, depth_multiplier=1.0, scope=None): end_points = {} if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth =

Numpy基础

◇◆丶佛笑我妖孽 提交于 2019-11-29 22:23:08
Numpy 基础 注:以下代码中np为numpy库的简写 一、创建array # create array with datetype int16 a = np.array([[1,2,3],[2,4,6]], dtype=np.int16) # all zeros array b=np.zeros((2,2),dtype=int) #all ones array c=np.ones((3,4), dtype=np.int) #numpy range1~10之间,公差为1的等差数列 d=np.arange(1,10,1) #生成[0,4)之间步长为1的等差数列 e=np.arange(0,4, 2) #linespace 生成1~10之间只有2个数的等差数列 f=np.linspace(1,10,2,dtype=np.int) #输出结果 print('数组 a:', a) print('全0数组b:', b) print('全1数组c:', c) print('[1,10) 步长为1的等差数列 d:', d) print('[0,4)步长为2的等差数列 e:', e) print('[1,10) 等分为5份的数列 f', f) 终端结果 二、运算 #四则运算 a=np.array([2,4,6]) b=np.arange(1,4) c=a+b d=a-b e=a*b f=a/b