axis

Merge multiple 2d lists considering axis in order

最后都变了- 提交于 2019-12-01 06:34:32
My purpose is to combine multiple 2d list in order such as: a = [[1,2],[3,1]] b= [[3,6],[2,9]] c = [[5,1],[8,10]] Expected: [[1,2,3,6,5,1],[3,1,2,9,8,10]] Following other's advice from this site, I tried to use collections module like the code below: from collections import Counter a = [[1,2],[3,1]] b= [[3,6],[2,9]] c = [[5,1],[8,10]] d = [[k,v] for k,v in (Counter(dict(a)) + Counter(dict(b))+ Counter(dict(c))).items()] print d However, the result is [[1, 2], [3, 1], [3, 6], [2, 9]] which is not what I expected. Do you have any idea to solve this problem? Maybe if there is function or module

Java开发webservice的几种方式

↘锁芯ラ 提交于 2019-12-01 04:31:58
1.Axis2方式 Axis是apache下一个开源的webservice开发组件,出现的算是比较早了,也比较成熟。这里主要介绍Axis+eclipse开发webservice,当然不用eclipse也可以开发和发布webservice,只是用eclipse会比较方便。 (1)下载eclipse的Java EE版本 http://www.eclipse.org/downloads/ (2)下载axis2 http://axis.apache.org/axis2/java/core/download.cgi (3)下载eclipse的axis2插件 Axis2_Codegen_Wizard Axis2_Service_Archiver http://axis.apache.org/axis2/java/core/tools/index.html 推荐使用1.3的版本 (4)eclipse安装axis2插件 1)在任意目录下新建一个Axis2文件夹,在该文件夹下新建eclipse目录,在eclipse目录中新建plugins目录和features目录,例如:D:\programSoftware\eclipse-SVN\Axis2\eclipse; 2)把下载的axis2插件解压,并把解压的文件放到新建的eclipse的plugins目录下; 3)在%eclipse_home

Handler to add HTTP headers to HTTP request not invoked when using Axis Client API

可紊 提交于 2019-12-01 04:04:56
I am using the Axis API to access Axis HTTP server. The documentation of the API can be found here . I am using the following code to add handlers to the server. service is of type java.xml.rpc.Service HandlerRegistry registry = service.getHandlerRegistry(); QName serviceName = new QName(url, "MyServiceClass"); List<HandlerInfo> handlerChain = new ArrayList<HandlerInfo>(); HandlerInfo handlerInfo = new HandlerInfo(MyHandler.class, null, null); handlerChain.add(handlerInfo); registry.setHandlerChain(serviceName, handlerChain); I know that the service name is correct as I am getting the correct

matplotlib how to start ticks leaving space from the axis origin

情到浓时终转凉″ 提交于 2019-12-01 04:02:17
问题 I need to plot non-numeric data against dates as a simple line graph. I am using matplotlib. Here's some sample code. import matplotlib.pyplot as plt xticks=['Jan','Feb','Mar','April','May'] x=[1,2,3,4,5] yticks = ['Windy', 'Sunny', 'Rainy', 'Cloudy', 'Snowy'] y=[2,1,3,5,4] plt.plot(x,y,'bo') #.2,.1,.7,.8 plt.subplots_adjust(left =0.2) plt.xticks(x,xticks) plt.yticks(y,yticks) plt.show() I want to start the tick labels leaving some space from the origin. So that they don't look very crammed.

Handler to add HTTP headers to HTTP request not invoked when using Axis Client API

独自空忆成欢 提交于 2019-12-01 01:54:25
问题 I am using the Axis API to access Axis HTTP server. The documentation of the API can be found here. I am using the following code to add handlers to the server. service is of type java.xml.rpc.Service HandlerRegistry registry = service.getHandlerRegistry(); QName serviceName = new QName(url, "MyServiceClass"); List<HandlerInfo> handlerChain = new ArrayList<HandlerInfo>(); HandlerInfo handlerInfo = new HandlerInfo(MyHandler.class, null, null); handlerChain.add(handlerInfo); registry

Eclipse Generated Web Service Client Extremely Slow

前提是你 提交于 2019-12-01 00:43:50
问题 A little up front info: I have a SOAP service (hosted using JAX-WS (Endpoint class), but I don't think that is important). I can connect to and use the web service just fine with Visual Studio generating the client (C#). I generated a java client using Eclipse Web Tools (new --> other --> web services --> web services client). Then I wrote a JUnit test to test the client. The test passes, but it takes an extremely long time to run. Each service call takes 300 seconds (give or take a couple

[Pandas] pandas 常用操作

戏子无情 提交于 2019-11-30 23:15:40
读取 CSV 文件 可以使用 pd.read_csv() 来读取文件, pd.read_csv() 的参数非常多,这里不一一介绍每个参数的含义,只对常用参数和用法做总结,全部参数可参考 官方文档 。 常用参数: filepath_or_buffer :要读取的文件路径; seq:分隔符,对 csv 文件来说,每行数据分隔符为逗号 , ,默认值为 , ; delimiter 是 seq 的别名; header:是否读入表头, header=None 则不读入文件中的表头,使用默认的表头([0,1,...]) 假设文件 D:\\test.csv 的内容如下 name,gender,1,2 tom,male,3,3 jane,female,4,4 erik,male,5,5 使用 pd.read_csv() 来读取文件 df = pd.read_csv('D:\\test.csv', sep=',') df 输出 如果不需要读入表头的话,指定 header=None 即可 df = pd.read_csv('D:\\test.csv', header=None) df 输出 可以看到,表头被替换成了默认的索引。 删除行 创建DataFrame df = pd.DataFrame({'name':['jane', 'mike', 'eric'], 'gender': ['female',

deep_learning_Function_tensorflow_unpack()

北战南征 提交于 2019-11-30 22:51:02
tf.unpack(A, axis)是一个解包函数。A是一个需要被解包的对象,axis是一个解包方式的定义,默认是零,如果是零,返回的结果就是按行解包。如果是1,就是按列解包。 例如: from tensorflow.models.rnn.ptb import reader import tensorflow as tf; import numpy as np; A = [[1, 2, 3], [4, 2, 3]] B = tf.unpack(A, axis=1) with tf.Session() as sess: print sess.run(B) 输出: [array([1, 4], dtype=int32), array([2, 2], dtype=int32), array([3, 3], dtype=int32)] ———————————————— 原文链接: https://blog.csdn.net/UESTC_C2_403/article/details/72808556 来源: https://www.cnblogs.com/0405mxh/p/11643704.html

some code about numpy

烂漫一生 提交于 2019-11-30 22:23:11
import numpy as np np.__version__ #版本 #由于python的list不要求存储同样的类型,但是效率不高。 L = [i for i in range(10)] L[5] = "Asuka" #而调用array的效率相比更好,但是它没有将数据当做向量或者矩阵,不支持基本运算,会报错。 #建议用numpy中的array nparr = np.array([i for i in range(10)]) nparr[5] = 100.0 #整数可以换成浮点型 nparr.dtype #数据类型 np.zeros(10) #0向量 np.zeros(10, dtype=float) np.zeros((3, 5)) #0矩阵 np.zeros(shape=(3, 5), dtype=int) np.ones(10) #单位向量 np.ones((3, 5)) #单位矩阵 np.full((3, 5), 666) #填充666 np.full(fill_value=666, shape=(3, 5)) np.arange(0, 20, 2) # 2为step,而且与range相比,是可以用小数的 np.arange(0,10,1.5) np.linspace(0, 20, 11) #等分 np.random.randint(0, 10) #0

智联招聘 'python数据分析'职位分析第一篇

丶灬走出姿态 提交于 2019-11-30 18:22:58
1.待分析的数据 是从智联招聘平台上手动爬取的python数据分析职位的相关信息,表的关键字分别为“薪金”、“学历”、“经验”。为后续数据分析做准备。数据部分截图,所示 智联招聘平台爬取‘python数据分析’职位,记录总共有500多条,其中包括一小部分重复发布的记录。考虑到数据量本身比较小,在此不对重复数据进行筛选。对关键字“学历”、“经验”,分别进行统计,发现其对应频率分别如下: 发现学历一栏“不限”和“中专”相对比较少,打印出内容,发现学历为“不限”的工资与学历“本科”比较接近,“中专”工资与“大专”比较接近,并无多大区别,因此修改dataframe中,将”不限”修改为“本科”,“中专”修改为“大专”。调用pandas的replace()函数 details.replace({'education': '不限'}, '本科', inplace=True) details.replace({'education': '中专'}, '大专', inplace=True) details为原始数据表。注意,如果不想建立dataframe副本,可以设置inplace=True,直接修改原始dataframe. 同样道理,“无经验”,”1年以下“的工资和经验"不限”接近,同样可以合并。 details.replace({'experience': '无经验'}, '不限',