大数据处理引擎Spark与Flink对比分析!
大数据技术正飞速地发展着,催生出一代又一代快速便捷的大数据处理引擎,无论是Hadoop、Storm,还是后来的Spark、Flink。然而,毕竟没有哪一个框架可以完全支持所有的应用场景,也就说明不可能有任何一个框架可以完全取代另一个。今天,大圣众包威客平台( www.dashengzb.cn )将从几个项出发着重对比Spark与Flink这两个大数据处理引擎,探讨其两者的区别。 一、Spark与Flink几个主要项目的对比与分析 1.性能对比 测试环境: CPU:7000个 内存:单机128GB 版本:Hadoop 2.3.0,Spark 1.4,Flink 0.9 数据:800MB,8GB,8TB 算法:K-means:以空间中K个点为中心进行聚类,对最靠近它们的对象归类,通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果 迭代:K=10,3组数据 相同点:Spark与Flink都运行在Hadoop YARN上,两者都拥有非常好的计算性能,因为两者都可以基于内存计算框架以进行实时计算。 相异点:结合上图三者的迭代次数(纵坐标是秒,横坐标是次数)图表观察,可得出在性能上,呈现Flink > Spark > Hadoop(MR)的结果,且迭代次数越多越明显。Flink之所以优于Spark和Hadoop