%matplotlib inline import random import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm import statsmodels.formula.api as smf sns.set_context("talk")
Anscombe’s quartet
Anscombe’s quartet comprises of four datasets, and is rather famous. Why? You’ll find out in this exercise.
anascombe = pd.read_csv('data/anscombe.csv') anascombe.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
| dataset | x | y |
---|
0 | I | 10.0 | 8.04 |
---|
1 | I | 8.0 | 6.95 |
---|
2 | I | 13.0 | 7.58 |
---|
3 | I | 9.0 | 8.81 |
---|
4 | I | 11.0 | 8.33 |
---|
Part 1
For each of the four datasets…
- Compute the mean and variance of both x and y
- Compute the correlation coefficient between x and y
- Compute the linear regression line: y=β0+β1x+ (hint: use statsmodels and look at the Statsmodels notebook)
dataset = anascombe[anascombe.dataset == "I"] print("dataset 'I':\n") print(" The mean of x is %0.2f, and the variance is %0.2lf." % (dataset['x'].mean(), dataset['x'].var())) print(" The mean of y is %0.2f, and the variance is %0.2lf.\n" % (dataset['y'].mean(), dataset['y'].var())) a = np.array([dataset['x'], dataset['y']]) b = np.corrcoef(a) print(" The correlation coefficient between x and y is %lf.\n" % b[0][1]) n = len(dataset) is_train = np.random.rand(n) < 0.7 train = dataset[is_train].reset_index(drop=True) test = dataset[~is_train].reset_index(drop=True) lin_model = smf.ols('x ~ y', train).fit() lin_model.summary()
dataset 'I': The mean of x is 9.00, and the variance is 11.00. The mean of y is 7.50, and the variance is 4.13. The correlation coefficient between x and y is 0.816421.
OLS Regression Results Dep. Variable: | x | R-squared: | 0.635 |
---|
Model: | OLS | Adj. R-squared: | 0.574 |
---|
Method: | Least Squares | F-statistic: | 10.43 |
---|
Date: | Mon, 11 Jun 2018 | Prob (F-statistic): | 0.0179 |
---|
Time: | 12:08:36 | Log-Likelihood: | -16.703 |
---|
No. Observations: | 8 | AIC: | 37.41 |
---|
Df Residuals: | 6 | BIC: | 37.57 |
---|
Df Model: | 1 | | |
---|
Covariance Type: | nonrobust | | |
---|
| coef | std err | t | P>|t| | [0.025 | 0.975] |
---|
Intercept | -1.2102 | 3.335 | -0.363 | 0.729 | -9.371 | 6.951 |
---|
y | 1.4174 | 0.439 | 3.230 | 0.018 | 0.344 | 2.491 |
---|
Omnibus: | 0.024 | Durbin-Watson: | 2.656 |
---|
Prob(Omnibus): | 0.988 | Jarque-Bera (JB): | 0.188 |
---|
Skew: | 0.082 | Prob(JB): | 0.910 |
---|
Kurtosis: | 2.268 | Cond. No. | 32.3 |
---|
dataset = anascombe[anascombe.dataset == "II"] print("dataset 'II':\n") print(" The mean of x is %0.2f, and the variance is %0.2f.\n" % (dataset['x'].mean(), dataset['x'].var())) print(" The mean of y is %0.2f, and the variance is %0.2f.\n" % (dataset['y'].mean(), dataset['y'].var())) a = np.array([dataset['x'], dataset['y']]) b = np.corrcoef(a) print(" The correlation coefficient between x and y is %lf.\n" % b[0][1]) n = len(dataset) is_train = np.random.rand(n) < 0.7 train = dataset[is_train].reset_index(drop=True) test = dataset[~is_train].reset_index(drop=True) lin_model = smf.ols('x ~ y', train).fit() lin_model.summary()
dataset 'II': The mean of x is 9.00, and the variance is 11.00. The mean of y is 7.50, and the variance is 4.13. The correlation coefficient between x and y is 0.816237.
OLS Regression Results Dep. Variable: | x | R-squared: | 0.678 |
---|
Model: | OLS | Adj. R-squared: | 0.638 |
---|
Method: | Least Squares | F-statistic: | 16.85 |
---|
Date: | Mon, 11 Jun 2018 | Prob (F-statistic): | 0.00341 |
---|
Time: | 12:08:36 | Log-Likelihood: | -20.461 |
---|
No. Observations: | 10 | AIC: | 44.92 |
---|
Df Residuals: | 8 | BIC: | 45.53 |
---|
Df Model: | 1 | | |
---|
Covariance Type: | nonrobust | | |
---|
| coef | std err | t | P>|t| | [0.025 | 0.975] |
---|
Intercept | -1.2852 | 2.568 | -0.501 | 0.630 | -7.206 | 4.636 |
---|
y | 1.3882 | 0.338 | 4.105 | 0.003 | 0.608 | 2.168 |
---|
Omnibus: | 2.361 | Durbin-Watson: | 2.780 |
---|
Prob(Omnibus): | 0.307 | Jarque-Bera (JB): | 1.184 |
---|
Skew: | 0.829 | Prob(JB): | 0.553 |
---|
Kurtosis: | 2.694 | Cond. No. | 29.9 |
---|
dataset = anascombe[anascombe.dataset == "III"] print("dataset 'III':\n") print(" The mean of x is %0.2f, and the variance is %0.2f.\n" % (dataset['x'].mean(), dataset['x'].var())) print(" The mean of y is %0.2f, and the variance is %0.2f.\n" % (dataset['y'].mean(), dataset['y'].var())) a = np.array([dataset['x'], dataset['y']]) b = np.corrcoef(a) print(" The correlation coefficient between x and y is %lf.\n" % b[0][1]) n = len(dataset) is_train = np.random.rand(n) < 0.7 train = dataset[is_train].reset_index(drop=True) test = dataset[~is_train].reset_index(drop=True) lin_model = smf.ols('x ~ y', train).fit() lin_model.summary()
dataset 'III': The mean of x is 9.00, and the variance is 11.00. The mean of y is 7.50, and the variance is 4.12. The correlation coefficient between x and y is 0.816287.
OLS Regression Results Dep. Variable: | x | R-squared: | 0.704 |
---|
Model: | OLS | Adj. R-squared: | 0.655 |
---|
Method: | Least Squares | F-statistic: | 14.27 |
---|
Date: | Mon, 11 Jun 2018 | Prob (F-statistic): | 0.00921 |
---|
Time: | 12:08:36 | Log-Likelihood: | -16.338 |
---|
No. Observations: | 8 | AIC: | 36.68 |
---|
Df Residuals: | 6 | BIC: | 36.84 |
---|
Df Model: | 1 | | |
---|
Covariance Type: | nonrobust | | |
---|
| coef | std err | t | P>|t| | [0.025 | 0.975] |
---|
Intercept | -1.0892 | 2.651 | -0.411 | 0.695 | -7.575 | 5.396 |
---|
y | 1.2835 | 0.340 | 3.777 | 0.009 | 0.452 | 2.115 |
---|
Omnibus: | 1.577 | Durbin-Watson: | 2.069 |
---|
Prob(Omnibus): | 0.455 | Jarque-Bera (JB): | 0.749 |
---|
Skew: | 0.708 | Prob(JB): | 0.688 |
---|
Kurtosis: | 2.506 | Cond. No. | 27.6 |
---|
dataset = anascombe[anascombe.dataset == "IV"] print("dataset 'IV':\n") print(" The mean of x is %0.2f, and the variance is %0.2f.\n" % (dataset['x'].mean(), dataset['x'].var())) print(" The mean of y is %0.2f, and the variance is %0.2f.\n" % (dataset['y'].mean(), dataset['y'].var())) a = np.array([dataset['x'], dataset['y']]) b = np.corrcoef(a) print(" The correlation coefficient between x and y is %lf.\n" % b[0][1]) n = len(dataset) is_train = np.random.rand(n) < 0.7 train = dataset[is_train].reset_index(drop=True) test = dataset[~is_train].reset_index(drop=True) lin_model = smf.ols('x ~ y', train).fit() lin_model.summary()
dataset 'IV': The mean of x is 9.00, and the variance is 11.00. The mean of y is 7.50, and the variance is 4.12. The correlation coefficient between x and y is 0.816521.
OLS Regression Results Dep. Variable: | x | R-squared: | -inf |
---|
Model: | OLS | Adj. R-squared: | -inf |
---|
Method: | Least Squares | F-statistic: | -6.000 |
---|
Date: | Mon, 11 Jun 2018 | Prob (F-statistic): | 1.00 |
---|
Time: | 12:08:36 | Log-Likelihood: | 253.03 |
---|
No. Observations: | 8 | AIC: | -502.1 |
---|
Df Residuals: | 6 | BIC: | -501.9 |
---|
Df Model: | 1 | | |
---|
Covariance Type: | nonrobust | | |
---|
| coef | std err | t | P>|t| | [0.025 | 0.975] |
---|
Intercept | 8.0000 | 1.13e-14 | 7.08e+14 | 0.000 | 8.000 | 8.000 |
---|
y | -1.11e-16 | 1.54e-15 | -0.072 | 0.945 | -3.88e-15 | 3.66e-15 |
---|
Omnibus: | 154.682 | Durbin-Watson: | 0.000 |
---|
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 3.000 |
---|
Skew: | 0.000 | Prob(JB): | 0.223 |
---|
Kurtosis: | 0.000 | Cond. No. | 46.5 |
---|
Part 2
Using Seaborn, visualize all four datasets.
hint: use sns.FacetGrid combined with plt.scatter
g = sns.FacetGrid(anascombe, col="dataset") g.map(plt.scatter, "x","y")
