本文主要是PyTorch中Variable变量的一些用法。
import torch from torch.autograd import Variable tensor = torch.FloatTensor([[1, 2], [3, 4]]) # 定义Variable, requires_grad用来指定是否需要计算梯度 variable = Variable(tensor, requires_grad = True) print tensor print variable
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
1 2 3 4 [torch.FloatTensor of size 2x2] Variable containing: 1 2 3 4 [torch.FloatTensor of size 2x2]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
# 计算x^2的均值 tensor_mean = torch.mean(tensor * tensor) variable_mean = torch.mean(variable * variable) print tensor_mean print variable_mean
- 1
- 2
- 3
- 4
- 5
7.5 Variable containing: 7.5000 [torch.FloatTensor of size 1]
- 1
- 2
- 3
- 4
- 5
# variable进行反向传播 # 梯度计算如下: # variable_mean = 1/4 * sum(variable * variable) # d(variable_mean)/d(variable) = 1/4 * 2 * variable = 1/2 * variable variable_mean.backward() # 输出variable中的梯度 print variable.grad
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
Variable containing: 0.5000 1.0000 1.5000 2.0000 [torch.FloatTensor of size 2x2]
- 1
- 2
- 3
- 4
- 5
# *表示逐元素点乘,不是矩阵乘法 print tensor * tensor print variable * variable
- 1
- 2
- 3
1 4 9 16 [torch.FloatTensor of size 2x2] Variable containing: 1 4 9 16 [torch.FloatTensor of size 2x2]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
# 输出variable中的data, data是tensor print variable.data
- 1
- 2
1 2 3 4 [torch.FloatTensor of size 2x2]
文章来源: PyTorch基本用法(二)――Variable