Efficient product of 1D array and 3D array along one dimension - NumPy

半城伤御伤魂 提交于 2019-12-01 22:05:08

You can use np.tensordot -

np.tensordot(t,I, axes=([0],[0]))

You can also use np.einsum -

np.einsum('i,ijk->jk',t,I)

Runtime test and output verification -

In [21]: def original_app(t,I):
    ...:     tI = np.asarray([t[i]*I[i,:,:] for i in range(t.shape[0])])
    ...:     tsum = np.sum(tI,axis=0)
    ...:     return tsum
    ...: 

In [22]: # Inputs with random elements
    ...: t = np.random.rand(70,)
    ...: I = np.random.rand(70,1024,1024)
    ...: 

In [23]: np.allclose(original_app(t,I),np.tensordot(t,I, axes=([0],[0])))
Out[23]: True

In [24]: np.allclose(original_app(t,I),np.einsum('i,ijk->jk',t,I))
Out[24]: True

In [25]: %timeit np.tensordot(t,I, axes=([0],[0]))
1 loops, best of 3: 110 ms per loop

In [26]: %timeit np.einsum('i,ijk->jk',t,I)
1 loops, best of 3: 201 ms per loop

Divakar gives the best (most efficient) answers. For completeness' sake, one other way of doing it is by using Numpy's broadcasting capabilities:

(t[:,np.newaxis,np.newaxis]*I).sum(axis=0)

By adding two axes to t, broadcasting becomes possible and one can use regular Numpy operations, which for some might be more readable.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!