问题:输出$[0,1,2,3,...n)$的所有子集。
1. 增量构造法:一次选出一个元素放到集合中。由于$A$中的元素个数不确定,每次递归调用都要输出当前集合。另外,递归边界也不需要显示确定——如果无法继续添加元素,自然就不会递归了。
void print_subset(int n, int* A, int cur){
for(int i = 0; i < cur; i++) printf("%d ", A[i]);
printf("\n");
int s = cur ? A[cur - 1] + 1 : 0;
for(int i = s; i < n; ++i){
A[cur] = i;
print_subset(n, A, cur + 1);
}
}
2. 位向量法:构造一个位向量$B[i]$,而不是直接构造子集$A$本身,其中$B[i]=1$,当且仅当$i$在子集$A$中。
void print_subset1(int n, int* B, int cur){
if(cur == n){
for(int i = 0; i < cur; ++i)
if(B[i]) printf("%d ", i);
printf("\n");
return;
}
B[cur] = 1;
print_subset1(n, B, cur + 1);
B[cur] = 0;
print_subset1(n, B, cur + 1);
}
3. 二进制法:当用二进制表示子集时,位运算中的按位与、或、异或对应集合的交、并和对称差。

输出子集$S$对应的各个元素:
void print_subset2(int n, int s){
for(int i = 0; i < n; ++i)
if(s & (1 << i)) printf("%d ", i);
printf("\n");
}
枚举子集:
for(int i = 0; i < (1 << n); ++i)
print_subset2(n, i);
Leetcode 78. Subsets
给一个包含不同整数的集合,返回其所有子集。
方法1:(recursive)
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> subs;
vector<int> sub;
dfs(nums, 0, sub, subs);
return subs;
}
void dfs(vector<int>& nums, int i, vector<int>& sub, vector<vector<int>>& subs){
subs.push_back(sub);
for(int j = i; j < nums.size(); ++j){
sub.push_back(nums[j]);
dfs(nums, j + 1, sub, subs);
sub.pop_back();
}
}
};
方法2:位运算
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> res;
for(int i = 0; i < (1 << n); ++i){
vector<int> cur;
for(int j = 0; j < n; ++j){
if(i & (1 << j))
cur.push_back(nums[j]);
}
res.push_back(cur);
}
return res;
}
};
方法3:(iterative)
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> subs = {{}};
for (int num : nums) {
int n = subs.size();
for (int i = 0; i < n; i++) {
subs.push_back(subs[i]);
subs.back().push_back(num);
}
}
return subs;
}
};
Leetcode 90. Subsets II
给定一个集合,包含重复元素,返回其所有子集。
方法1:(iterative)

class Solution {
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<vector<int>> res = {{}};
for(int i = 0; i < nums.size();){
int cnt = 0, num = nums[i];
while(i < nums.size() && nums[i] == num){
i++;
cnt++;
}
int size = res.size();
for(int j = 0; j < size; ++j){
vector<int> tmp = res[j];
for(int k = 0; k < cnt; ++k){
tmp.push_back(num);
res.push_back(tmp);
}
}
}
return res;
}
};
方法2:(recursive)
class Solution {
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<vector<int>> subs;
vector<int> sub;
dfs(subs, sub, nums, 0);
return subs;
}
void dfs(vector<vector<int>>& subs, vector<int>& sub, vector<int>& nums, int i){
subs.push_back(sub);
for(int j = i; j < nums.size(); ++j){
if(j == i || nums[j] != nums[j - 1]){
sub.push_back(nums[j]);
dfs(subs, sub, nums, j + 1);
sub.pop_back();
}
}
}
};