题意:n个给定点,q个询问点,每次询问给出一个坐标A,问从n中选定两个点B,C,有多少种方案使得ABC是个直角三角形。
思路:直角三角形能想的就那几个,枚举边,枚举顶点,这个题都行,写的枚举顶点的,A点分两种情况,1是直角,2是非直角。防止误差,用分数表示斜率,然后用了map<pair<int,int> int> 发现t了,改成unordered_map发现这个unordered_map只能映射一个,即unordered_map<ll, int>,所以得用到hash,把维的点hash成一个数。
说下那两种情况,
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b); }
int ans[2200];
unordered_map<ll,int>mp;
struct node{
int x, y;
}p[2200], q[2200];
ll Hash(node v){ //hash
ll A = 2333, B = 5279, C = 998244353;
return A*v.x + B*v.y + C;
}
int main(){
int n,w; cin >> n >> w;
for(int i = 1;i <= n;i++) scanf("%d%d",&p[i].x, &p[i].y);
for(int i = 1;i <= w;i++) scanf("%d%d",&q[i].x,&q[i].y);
//第一种,A为直角顶点
for(int i = 1;i <= w;i++){
mp.clear();
for(int j = 1;j <= n;j++){
int x = q[i].x - p[j].x;
int y = q[i].y - p[j].y;
int g = gcd(x,y);
x /= g;
y /= g;
mp[Hash((node){x, y})]++;
}
for(int j = 1; j <= n; j++){
int nowx=q[i].x - p[j].x;
int nowy=q[i].y - p[j].y;
int g=gcd(nowx,nowy);
nowx /= g;
nowy /= g;
swap(nowx, nowy);
ans[i] += (mp[Hash((node){-nowx, nowy})] + mp[Hash((node){nowx, -nowy})]);
}
ans[i] /= 2;
}
//第二种,A为非直角顶点
for(int i = 1; i <= n; i++){
mp.clear();
for(int j = 1; j <= n; j++){
if(i == j) continue;
int x = p[i].x - p[j].x;
int y = p[i].y - p[j].y;
int g = gcd(x,y);
x /= g;
y /= g;
mp[Hash((node){x, y})]++;
}
for(int j = 1; j <= w; j++){
int nowx=p[i].x - q[j].x;
int nowy=p[i].y - q[j].y;
int g=gcd(nowx,nowy);
nowx /= g;
nowy /= g;
swap(nowx, nowy);
ans[j] += (mp[Hash((node){-nowx, nowy})] + mp[Hash((node){nowx, -nowy})]);
}
}
for(int i = 1; i <= w; i++) printf("%d\n",ans[i]);
return 0;
}