How do I create gold data for TextCategorizer training?

十年热恋 提交于 2019-12-01 05:41:27

According to this example train_textcat.py it should be something like {'cats': {'ANIMAL': 0, 'COLOR': 1}} if you want to train a multi-label model. Also, if you have only two classes, you can simply use {'cats': {'ANIMAL': 1}} for label ANIMAL and {'cats': {'ANIMAL': 0}} for label COLOR.

You can use the following minimal working example for a one category text classification;

import spacy

nlp = spacy.load('en')

train_data = [
    (u"That was very bad", {"cats": {"POSITIVE": 0}}),
    (u"it is so bad", {"cats": {"POSITIVE": 0}}),
    (u"so terrible", {"cats": {"POSITIVE": 0}}),
    (u"I like it", {"cats": {"POSITIVE": 1}}),
    (u"It is very good.", {"cats": {"POSITIVE": 1}}),
    (u"That was great!", {"cats": {"POSITIVE": 1}}),
]


textcat = nlp.create_pipe('textcat')
nlp.add_pipe(textcat, last=True)
textcat.add_label('POSITIVE')
optimizer = nlp.begin_training()
for itn in range(100):
    for doc, gold in train_data:
        nlp.update([doc], [gold], sgd=optimizer)

doc = nlp(u'It is good.')
print(doc.cats)
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!