import tensorflow as tf
from keras.utils import np_utils
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
SHAPE = 28 * 28
CLASSES = 10
x_train = x_train.reshape(x_train.shape[0], SHAPE)
x_test = x_test.reshape(x_test.shape[0], SHAPE)
y_train = np_utils.to_categorical(y_train, CLASSES)
y_test = np_utils.to_categorical(y_test, CLASSES)
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=1000, epochs=50)
evaluate = model.evaluate(x_test, y_test)
print(evaluate)