Special CUDA Double Precision trig functions for SFU

假装没事ソ 提交于 2019-11-30 16:32:32

As the SFU only supports certain single-precision operations, there are no double-precision __cos() and __sin() device functions. There are single-precision __cosf() and __sinf() device functions, as well as other functions detailed in table C-4 of the CUDA 4.2 Programming Manual.

I assume you are looking for faster alternatives to the double-precision versions of the standard math functions sin() and cos()? If sine and cosine of the same argument are needed, sincos() should be used for a significant performance boost. If the argument of sine or cosine is multiplied by π, you would want to use sinpi(), cospi(), or sincospi() instead, for even more performance. For example, sincospi() is very useful when implementing the Box-Muller algorithm for generating normally distributed random numbers. Also, check out the CUDA 5.0 preview for best possible performance (note that the preview provides alpha-release quality).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!