Convert nested JSON to CSV file in Python

二次信任 提交于 2019-11-30 15:48:17

For the JSON data you have given, you could do this by parsing the JSON structure to just return a list of all the leaf nodes.

This assumes that your structure is consistent throughout, if each entry can have different fields, see the second approach.

For example:

import json
import csv

def get_leaves(item, key=None):
    if isinstance(item, dict):
        leaves = []
        for i in item.keys():
            leaves.extend(get_leaves(item[i], i))
        return leaves
    elif isinstance(item, list):
        leaves = []
        for i in item:
            leaves.extend(get_leaves(i, key))
        return leaves
    else:
        return [(key, item)]


with open('json.txt') as f_input, open('output.csv', 'w', newline='') as f_output:
    csv_output = csv.writer(f_output)
    write_header = True

    for entry in json.load(f_input):
        leaf_entries = sorted(get_leaves(entry))

        if write_header:
            csv_output.writerow([k for k, v in leaf_entries])
            write_header = False

        csv_output.writerow([v for k, v in leaf_entries])

If your JSON data is a list of entries in the format you have given, then you should get output as follows:

address_line_1,company_number,country_of_residence,etag,forename,kind,locality,middle_name,month,name,nationality,natures_of_control,notified_on,postal_code,premises,region,self,surname,title,year
Address 1,12345678,England,26281dhge33b22df2359sd6afsff2cb8cf62bb4a7f00,John,individual-person-with-significant-control,Henley-On-Thames,M,2,John M Smith,Vietnamese,ownership-of-shares-50-to-75-percent,2016-04-06,RG9 1DP,161,Oxfordshire,/company/12345678/persons-with-significant-control/individual/bIhuKnFctSnjrDjUG8n3NgOrl,Smith,Mrs,1977
Address 1,12345679,England,26281dhge33b22df2359sd6afsff2cb8cf62bb4a7f00,John,individual-person-with-significant-control,Henley-On-Thames,M,2,John M Smith,Vietnamese,ownership-of-shares-50-to-75-percent,2016-04-06,RG9 1DP,161,Oxfordshire,/company/12345678/persons-with-significant-control/individual/bIhuKnFctSnjrDjUG8n3NgOrl,Smith,Mrs,1977

If each entry can contain different (or possibly missing) fields, then a better approach would be to use a DictWriter. In this case, all of the entries would need to be processed to determine the complete list of possible fieldnames so that the correct header can be written.

import json
import csv

def get_leaves(item, key=None):
    if isinstance(item, dict):
        leaves = {}
        for i in item.keys():
            leaves.update(get_leaves(item[i], i))
        return leaves
    elif isinstance(item, list):
        leaves = {}
        for i in item:
            leaves.update(get_leaves(i, key))
        return leaves
    else:
        return {key : item}


with open('json.txt') as f_input:
    json_data = json.load(f_input)

# First parse all entries to get the complete fieldname list
fieldnames = set()

for entry in json_data:
    fieldnames.update(get_leaves(entry).keys())

with open('output.csv', 'w', newline='') as f_output:
    csv_output = csv.DictWriter(f_output, fieldnames=sorted(fieldnames))
    csv_output.writeheader()
    csv_output.writerows(get_leaves(entry) for entry in json_data)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!