Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?
Example:
Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
class Solution {
public int numTrees(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i <= n; i++){
for(int j = 1; j <= i; j++){
dp[i] += dp[j-1] * dp[i - j];
}
}
return dp[n];
}
}
自底向上的DP。递推公式下图可以理解,因为F(i, n)表示n个数字且以第i个为根的bst个数,所以两个循环都是小于等于。

求和可从下图理解,本质上是因为,每个数都有资格作为root,所以答案当然要把他们加起来。
