Getting statsmodels to use heteroskedasticity corrected standard errors in coefficient t-tests

匆匆过客 提交于 2019-11-30 09:03:01

The fit method of the linear models, discrete models and GLM, take a cov_type and a cov_kwds argument for specifying robust covariance matrices. This will be attached to the results instance and used for all inference and statistics reported in the summary table.

Unfortunately, the documentation doesn't really show this yet in an appropriate way. The auxiliary method that actually selects the sandwiches based on the options shows the options and required arguments: http://statsmodels.sourceforge.net/devel/generated/statsmodels.regression.linear_model.OLS.fit.html

For example, estimating an OLS model and using HC3 covariance matrices can be done with

model_ols = OLS(...)
result = model_ols.fit(cov_type='HC3')
result.bse
result.t_test(....)

Some sandwiches require additional arguments, for example cluster robust standard errors, can be selected in the following way, assuming mygroups is an array that contains the groups labels:

results = OLS(...).fit(cov_type='cluster', cov_kwds={'groups': mygroups}
results.bse
...

Some robust covariance matrices make additional assumptions about the data without checking. For example heteroscedasticity and autocorrelation robust standard errors or Newey-West, HAC, standard errors assume a sequential time series structure. Some panel data robust standard errors also assume stacking of the time series by individuals.

A separate option use_t is available to specify whether the t and F or the normal and chisquare distributions should be used by default for Wald tests and confidence intervals.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!