Making my NumPy array shared across processes

断了今生、忘了曾经 提交于 2019-11-30 08:51:30
unutbu

Note that you can start out with an array of complex dtype:

In [4]: data = np.zeros(250,dtype='float32, (250000,2)float32')

and view it as an array of homogenous dtype:

In [5]: data2 = data.view('float32')

and later, convert it back to complex dtype:

In [7]: data3 = data2.view('float32, (250000,2)float32')

Changing the dtype is a very quick operation; it does not affect the underlying data, only the way NumPy interprets it. So changing the dtype is virtually costless.

So what you've read about arrays with simple (homogenous) dtypes can be readily applied to your complex dtype with the trick above.


The code below borrows many ideas from J.F. Sebastian's answer, here.

import numpy as np
import multiprocessing as mp
import contextlib
import ctypes
import struct
import base64


def decode(arg):
    chunk, counter = arg
    print len(chunk), counter
    for x in chunk:
        peak_counter = 0
        data_buff = base64.b64decode(x)
        buff_size = len(data_buff) / 4
        unpack_format = ">%dL" % buff_size
        index = 0
        for y in struct.unpack(unpack_format, data_buff):
            buff1 = struct.pack("I", y)
            buff2 = struct.unpack("f", buff1)[0]
            with shared_arr.get_lock():
                data = tonumpyarray(shared_arr).view(
                    [('f0', '<f4'), ('f1', '<f4', (250000, 2))])
                if (index % 2 == 0):
                    data[counter][1][peak_counter][0] = float(buff2)
                else:
                    data[counter][1][peak_counter][1] = float(buff2)
                    peak_counter += 1
            index += 1
        counter += 1


def pool_init(shared_arr_):
    global shared_arr
    shared_arr = shared_arr_  # must be inherited, not passed as an argument


def tonumpyarray(mp_arr):
    return np.frombuffer(mp_arr.get_obj())


def numpy_array(shared_arr, peaks):
    """Fills the NumPy array 'data' with m/z-intensity values acquired
    from b64 decoding and unpacking the binary string read from the
    mzXML file, which is stored in the list 'peaks'.

    The m/z values are assumed to be ordered without validating this
    assumption.

    Note: This function uses multi-processing
    """
    processors = mp.cpu_count()
    with contextlib.closing(mp.Pool(processes=processors,
                                    initializer=pool_init,
                                    initargs=(shared_arr, ))) as pool:
        chunk_size = int(len(peaks) / processors)
        map_parameters = []
        for i in range(processors):
            counter = i * chunk_size
            # WARNING: I removed -1 from (i + 1)*chunk_size, since the right
            # index is non-inclusive. 
            chunk = peaks[i*chunk_size : (i + 1)*chunk_size]
            map_parameters.append((chunk, counter))
        pool.map(decode, map_parameters)

if __name__ == '__main__':
    shared_arr = mp.Array(ctypes.c_float, (250000 * 2 * 250) + 250)
    peaks = ...
    numpy_array(shared_arr, peaks)

If you can guarantee that the various processes which execute the assignments

if (index % 2 == 0):
    data[counter][1][peak_counter][0] = float(buff2)
else:
    data[counter][1][peak_counter][1] = float(buff2)

never compete to alter the data in the same locations, then I believe you can actually forgo using the lock

with shared_arr.get_lock():

but I don't grok your code well enough to know for sure, so to be on the safe side, I included the lock.

from multiprocessing import Process, Array
import numpy as np
import time
import ctypes

def fun(a):
    a[0] = -a[0]
    while 1:
        time.sleep(2)
        #print bytearray(a.get_obj())
        c=np.frombuffer(a.get_obj(),dtype=np.float32)
        c.shape=3,3
        print 'haha',c


def main():
    a = np.random.rand(3,3).astype(np.float32)
    a.shape=1*a.size
    #a=np.array([[1,3,4],[4,5,6]])
    #b=bytearray(a)
    h=Array(ctypes.c_float,a)
    print "Originally,",h

    # Create, start, and finish the child process
    p = Process(target=fun, args=(h,))
    p.start()
    #p.join()
    a.shape=3,3
    # Print out the changed values
    print 'first',a
    time.sleep(3)
    #h[0]=h[0]+1
    print 'main',np.frombuffer(h.get_obj(), dtype=np.float32)



if __name__=="__main__":
    main()
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!