Plot continuous raster data in binned classes with ggplot2 in R

落花浮王杯 提交于 2019-11-30 04:14:13

问题


I quite like the look and feel of ggplot2 and use them often to display raster data (e.g facetting over timesteps for time-varying precipitation fields is very useful).

However, I'm still wondering whether it is easily possible to bin the continuous raster values into discrete bins and assign to each bin a single colour, that is shown in the legend (as many GIS systems do).

I tried with the guide = "legend", and breaks arguments of the scale_fill_gradient option. However these affect just the legend on the side of the graph, but the plotted values are still continuous.

library(ggplot2)
data <- data.frame(x=rep(seq(1:10),times = 10), y=rep(seq(1:10),each = 10), value = runif(100,-10,10))
ggplot(data = data, aes(x=x,y=y)) +
  geom_raster(aes(fill = value)) +
  coord_equal() +
  scale_fill_gradient2(low = "darkred", mid = "white", high = "midnightblue",
                       guide = "legend", breaks = c(-8,-4,0,4,8))

My question is mainly how to discretize the data that is plotted in ggplot, so that the reader of the graph can make quantitative conclusions on the values represented by the colors.

Secondly, how can I still use a diverging color palette (similar to scale_fill_gradient2), that is centered around zero or another specific value?


回答1:


You should use the raster package to work with raster data. This package provides several function to work with categorical rasters. For example, with reclassify you can convert a continuous file into a discrete raster. The next example is adapted from this question:

library(raster)

f <- system.file("external/test.grd", package="raster")
r <- raster(f)
r <- reclassify(r, c(0, 500, 1,
                     500, 2000, 2))

On the other hand, if you want to use the ggplot2 functions, the rasterVis package provides a simple wrapper around ggplot that works with RasterLayer objects:

library(rasterVis)

gplot(r) +
    geom_raster(aes(fill = factor(value))) +
    coord_equal()

to define your own colors you can add then:

scale_fill_manual(values=c('red','green')))



回答2:


The best is indeed to modify the underlying data set by manually discretizing it. Below answer is based on the answer by joran.

library(ggplot2)
set.seed(1)
data <- data.frame(x     = rep(seq(1:10),times = 10), 
                   y     = rep(seq(1:10),each = 10),
                   value = runif(100,-10,10))

# Define category breaks
breaks <- c(-Inf,-3:3,Inf)
data$valueDiscr <- cut(data$value,
                       breaks = breaks,
                       right = FALSE)

# Define colors using the function also used by "scale_fill_gradient2"
discr_colors_fct <- 
  scales::div_gradient_pal(low = "darkred",
                           mid = "white", 
                           high = "midnightblue")
discr_colors <- discr_colors_fct(seq(0, 1, length.out = length(breaks)))
discr_colors
# [1] "#8B0000" "#B1503B" "#D18978" "#EBC3B9" "#FFFFFF" "#C8C0DB" "#9184B7" "#5B4C93" "#191970"

ggplot(data = data, aes(x=x,y=y)) +
  geom_raster(aes(fill = valueDiscr)) +
  coord_equal() +
  scale_fill_manual(values = discr_colors) +
  guides(fill = guide_legend(reverse=T))



来源:https://stackoverflow.com/questions/25280763/plot-continuous-raster-data-in-binned-classes-with-ggplot2-in-r

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!