Calculating Covariance with Python and Numpy

谁说胖子不能爱 提交于 2019-11-29 23:11:35

When a and b are 1-dimensional sequences, numpy.cov(a,b)[0][1] is equivalent to your cov(a,b).

The 2x2 array returned by np.cov(a,b) has elements equal to

cov(a,a)  cov(a,b)

cov(a,b)  cov(b,b)

(where, again, cov is the function you defined above.)

Thanks to unutbu for the explanation. By default numpy.cov calculates the sample covariance. To obtain the population covariance you can specify normalisation by the total N samples like this:

Covariance = numpy.cov(a, b, bias=True)[0][1]
print(Covariance)

or like this:

Covariance = numpy.cov(a, b, ddof=0)[0][1]
print(Covariance)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!