Symbolic Matrices in Mathematica with unknown dimensions

被刻印的时光 ゝ 提交于 2019-11-29 23:07:23
Simon

Here's the code [dead-link removed] that wasted my morning... It's not complete, but it basically works. You can either get the notebook from the previous link [dead] or copy the code below.

Note that a similar question turned up on ask.sagemath not so long ago.

Almost like Sasha's solution, you define a symbolic matrix using

A = SymbolicMatrix["A", {n, k}]

for some string "A" that does not have to be the same as the symbol A. Ok, here's the code:

ClearAll[SymbolicMatrix]
Options[SymbolicMatrix] = {Transpose -> False, Conjugate -> False, MatrixPower -> 1};

Short hand for entering square matrices (could make it work for different heads...)

SymbolicMatrix[name_String, n:_Symbol|_Integer, opts : OptionsPattern[]] := SymbolicMatrix[name, {n, n}, opts]

Behavior under Transpose, Conjugate, ConjugateTranspose and Inverse

SymbolicMatrix/:Transpose[SymbolicMatrix[name_String,{m_,n_},opts:OptionsPattern[]]]:=SymbolicMatrix[name,{n,m},
  Transpose->!OptionValue[SymbolicMatrix,Transpose],Sequence@@FilterRules[{opts},Except[Transpose]]]
SymbolicMatrix/:Conjugate[SymbolicMatrix[name_String,{m_,n_},opts:OptionsPattern[]]]:=SymbolicMatrix[name,{m,n},
  Conjugate->!OptionValue[SymbolicMatrix,Conjugate],Sequence@@FilterRules[{opts},Except[Conjugate]]]
SymbolicMatrix/:ConjugateTranspose[A:SymbolicMatrix[name_String,{m_,n_},opts:OptionsPattern[]]]:=Conjugate[Transpose[A]]
SymbolicMatrix/:Inverse[SymbolicMatrix[name_String,{n_,n_},opts:OptionsPattern[]]]:=SymbolicMatrix[name,{n,n},
  MatrixPower->-OptionValue[SymbolicMatrix,MatrixPower],Sequence@@FilterRules[{opts},Except[MatrixPower]]]

SymbolicMatrix/:(Transpose|Conjugate|ConjugateTranspose|Inverse)[eye:SymbolicMatrix[IdentityMatrix,{n_,n_}]]:=eye

Combining matrix powers (including the identity matrix)

SymbolicMatrix/:SymbolicMatrix[a_String,{n_,n_},opt1:OptionsPattern[]].SymbolicMatrix[a_,{n_,n_},opt2:OptionsPattern[]]:=SymbolicMatrix[a,{n,n},Sequence@@FilterRules[{opt1},Except[MatrixPower]],MatrixPower->Total[OptionValue[SymbolicMatrix,#,MatrixPower]&/@{{opt1},{opt2}}]]/;FilterRules[{opt1},Except[MatrixPower]]==FilterRules[{opt2},Except[MatrixPower]]

SymbolicMatrix[a_String,{n_,n_},opts:OptionsPattern[]]:=SymbolicMatrix[IdentityMatrix,{n,n}]/;OptionValue[SymbolicMatrix,{opts},MatrixPower]===0

SymbolicMatrix/:(A:SymbolicMatrix[a_String,{n_,m_},OptionsPattern[]]).SymbolicMatrix[IdentityMatrix,{m_,m_}]:=A
SymbolicMatrix/:SymbolicMatrix[IdentityMatrix,{n_,n_}].(A:SymbolicMatrix[a_String,{n_,m_},OptionsPattern[]]):=A

Pretty printing with the dimension as a tooltip.

Format[SymbolicMatrix[name_String,{m_,n_},opts:OptionsPattern[]]]:=With[{
  base=If[OptionValue[SymbolicMatrix,MatrixPower]===1,
    StyleBox[name,FontWeight->Bold,FontColor->Darker@Brown],
    SuperscriptBox[StyleBox[name,FontWeight->Bold,FontColor->Darker@Brown],OptionValue[SymbolicMatrix,MatrixPower]]],
  c=Which[
    OptionValue[SymbolicMatrix,Transpose]&&OptionValue[SymbolicMatrix,Conjugate],"\[ConjugateTranspose]",
    OptionValue[SymbolicMatrix,Transpose],"\[Transpose]",
    OptionValue[SymbolicMatrix,Conjugate],"\[Conjugate]",
  True,Null]},
  Interpretation[Tooltip[DisplayForm@RowBox[{base,c}/.Null->Sequence[]],{m,n}],SymbolicMatrix[name,{m,n},opts]]]

Format[SymbolicMatrix[IdentityMatrix,{n_,n_}]]:=Interpretation[Tooltip[Style[\[ScriptCapitalI],Bold,Darker@Brown],n],SymbolicMatrix[IdentityMatrix,{n,n}]]

Define some rules for Dot. Need to extend then so that it can handle scalar quantities etc... Also so that inverses of A.B can be taken if A.B is square, even if neither A nor B are square.

SymbolicMatrix::dotdims = "The dimensions of `1` and `2` are not compatible";
Unprotect[Dot]; (*Clear[Dot];*)
Dot/:(a:SymbolicMatrix[_,{_,n_},___]).(b:SymbolicMatrix[_,{m_,_},___]):=(Message[SymbolicMatrix::dotdims,HoldForm[a],HoldForm[b]];Hold[a.b])/;Not[m===n]
Dot/:Conjugate[d:Dot[A_SymbolicMatrix,B__SymbolicMatrix]]:=Map[Conjugate,d]
Dot/:(t:Transpose|ConjugateTranspose)[d:Dot[A_SymbolicMatrix,B__SymbolicMatrix]]:=Dot@@Map[t,Reverse[List@@d]]
Dot/:Inverse[HoldPattern[d:Dot[SymbolicMatrix[_,{n_,n_},___]...]]]:=Reverse@Map[Inverse,d]
A_ .(B_+C__):=A.B+A.Plus[C]
(B_+C__).A_:=B.A+Plus[C].A
Protect[Dot];

Make Transpose, Conjugate and ConjugateTranspose distribute over Plus.

Unprotect[Transpose, Conjugate, ConjugateTranspose];
Clear[Transpose, Conjugate, ConjugateTranspose];
Do[With[{c = c}, c[p : Plus[a_, b__]] := c /@ p], {c, {Transpose, Conjugate, ConjugateTranspose}}]
Protect[Transpose, Conjugate, ConjugateTranspose];

Here's some simple tests/examples

Now for code that deals with the component expansion. Like Sasha's solution, I'll overload Part.

Clear[SymbolicMatrixComponent]
Options[SymbolicMatrixComponent]={Conjugate->False,MatrixPower->1};

Some notation

Format[SymbolicMatrixComponent[A_String,{i_,j_},opts:OptionsPattern[]]]:=Interpretation[DisplayForm[SubsuperscriptBox[StyleBox[A,Darker@Brown],RowBox[{i,",",j}],
RowBox[{If[OptionValue[SymbolicMatrixComponent,{opts},MatrixPower]===1,Null,OptionValue[SymbolicMatrixComponent,{opts},MatrixPower]],If[OptionValue[SymbolicMatrixComponent,{opts},Conjugate],"*",Null]}/.Null->Sequence[]]]],
SymbolicMatrixComponent[A,{i,j},opts]]

Code to extract parts of matrices and Dot products of matrices Need to add checks to ensure that explicit summation ranges are all sensible.

SymbolicMatrix/:SymbolicMatrix[A_String,{m_,n_},opts:OptionsPattern[]][[i_,j_]]:=SymbolicMatrixComponent[A,If[OptionValue[SymbolicMatrix,{opts},Transpose],Reverse,Identity]@{i,j},Sequence@@FilterRules[{opts},Options[SymbolicMatrixComponent]]]

SymbolicMatrix/:SymbolicMatrix[IdentityMatrix,{m_,n_}][[i_,j_]]:=KroneckerDelta[i,j]

Unprotect[Part]; (*Clear[Part]*)
Part/:((c___.b:SymbolicMatrix[_,{o_,n_},OptionsPattern[]]).SymbolicMatrix[A_String,{n_,m_},opts:OptionsPattern[]])[[i_,j_]]:=With[{s=Unique["i",Temporary]},Sum[(c.b)[[i,s]]SymbolicMatrixComponent[A,If[OptionValue[SymbolicMatrix,{opts},Transpose],Reverse,Identity]@{s,j},Sequence @@ FilterRules[{opts}, Options[SymbolicMatrixComponent]]],{s,n}]]
Part/:(a_+b_)[[i_,j_]]:=a[[i,j]]+b[[i,j]]/;!And@@(FreeQ[#,SymbolicMatrix]&/@{a,b})
Part/:Hold[a_][[i_,j_]]:=Hold[a[[i,j]]]/;!FreeQ[a,SymbolicMatrix]
Protect[Part];

Some examples:

I am not sure if this is really very helpful, but it could be a start:

ClearAll[SymbolicMatrix]
SymbolicMatrix /: Transpose[SymbolicMatrix[a_, {m_, n_}]] := 
     SymbolicMatrix[Evaluate[a[#2, #1]] & , {n, m}]
SymbolicMatrix /: 
 SymbolicMatrix[a_, {m_, n_}] . SymbolicMatrix[b_, {n_, p_}] := 
     With[{s = Unique[\[FormalI], Temporary]}, 
  SymbolicMatrix[Function[{\[FormalN], \[FormalM]}, 

    Evaluate[Sum[a[\[FormalN], s]*b[s, \[FormalM]], {s, 1, n}]]], {m, 
    p}]]
SymbolicMatrix /: SymbolicMatrix[a_, {m_, n_}][[i_, j_]] := a[i, j]


Now, define some symbolic matrices and do dot product:
In[109]:= amat = SymbolicMatrix[a, {n, k}]; 
bmat = SymbolicMatrix[b, {k, k}]; 

Evaluate matrix elements:

In[111]:= (amat . bmat . Transpose[amat])[[i, j]]

Out[111]= Sum[
 a[j, \[FormalI]$1485]*
  Sum[a[i, \[FormalI]$1464]*
    b[\[FormalI]$1464, \[FormalI]$1485], {\[FormalI]$1464, 1, k}], 
   {\[FormalI]$1485, 1, k}]

If you're willing to switch from Mathematica to Python the functionality you need is in the development branch of SymPy. It should be in the 0.72 release.

In [1]: from sympy import *
In [2]: X = MatrixSymbol('X', 2,3)
In [3]: Y = MatrixSymbol('Y', 3,3)
In [4]: X*Y*X.T
Out[4]: X⋅Y⋅X'

In [5]: (X*Y*X.T)[0,1]
Out[5]: 
X₀₀⋅(X₁₀⋅Y₀₀ + X₁₁⋅Y₀₁ + X₁₂⋅Y₀₂) + X₀₁⋅(X₁₀⋅Y₁₀ + X₁₁⋅Y₁₁ + X₁₂⋅Y₁₂) + X₀₂⋅(X₁₀⋅Y₂₀ + X₁₁⋅Y₂₁ + X₁₂⋅Y₂₂)

These purely symbolic objects can also make use of all of the standard matrix algorithms for explicitly defined matrices

In [14]: X = MatrixSymbol('X', 2,2)
In [14]: X.as_explicit().det()
Out[14]: X₀₀⋅X₁₁ - X₀₁⋅X₁₀

Symbolic shaped matrices are doable too

In [7]: n,m,k = symbols('n,m,k')
In [8]: X = MatrixSymbol('X', n,m)
In [9]: Y = MatrixSymbol('Y', m,k)
In [10]: (X*Y)[3,4]
Out[10]: 
m - 1                
 ___                 
 ╲                   
  ╲   X(3, k)⋅Y(k, 4)
  ╱                  
 ╱                   
 ‾‾‾                 
k = 0                

I use this approach:

SymbolicMatrix[symbol_String, m_Integer, n_Integer] := Table[
  ToExpression[symbol <> ToString[i] <> ToString[j]],
  {i, 1, m}, {j, 1, n}
];
SymbolicMatrix[symbol_Symbol, m_Integer, n_Integer] := SymbolicMatrix[ToString[symbol], m, n];
SymbolicMatrix[symbol_, m_Integer] := SymbolicMatrix[symbol, m, 1];

When invoked as A = SymbolicMatrix["a", 2, 3]; or A = SymbolicMatrix[a, 2, 3];, it creates a matrix

{{a11, a12, a13}, {a21, a22, a23}}

So, it creates mxn symbols, but I find them descriptive, and the whole thing is easy to use (at least for my purposes).

You can use NCAlgebra for that. For example:

MM = 3
LL = 2
NN = 3
AA = Table[Subscript[a, i, j], {i, 1, MM}, {j, 1, LL}]
BB = Table[Subscript[b, i, j], {i, 1, LL}, {j, 1, NN}]

will define symbolic matrices AA and BB with noncommutative entries $a_{i,j}$ and $b_{i,j}$. These can get manipulated and produce the results you're looking for. For example:

NCDot[AA, BB]

will multiply the two matrices using **,

AA ** BB // NCMatrixExpand

will do the same, and

tp[AA ** BB] // NCMatrixExpand

will transpose using tp.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!