Matplotlib Colormap with two parameter

放肆的年华 提交于 2019-11-29 14:20:22
ImportanceOfBeingErnest

In general colormaps in matplotlib are 1D, i.e. they map a scalar to a color. In order to obtain a 2D colormap one would need to somehow invent a mapping of two scalars to a color. While this is in principle possible, it's not as convenient as the usual colormaps.

An example is below, where we map two parameters to the red and blue RGB color channel respectively and thereby create a 2D colormap.

import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots()
ax.set_aspect("equal")

x = [1,1,2,2,3,3] # xdata
y = [1,2,3,1,2,3] # ydata
p1 = [0.2,0.4,.6,.8,.6,.1] # parameter 1
p2 = [0.4,0.5,.7,.1,.3,.7] # parameter 2

# create a very simple colormap, 
#  mapping parameter 1 to the red channel and 
#          parameter 2 to the blue channel
cmap = lambda p1,p2 : (p1, 0, p2)

# put shapes at positions (x[i], y[i]) and colorize them with our
# cmap according to their respective parameters
for i in range(len(x)):
    circle = plt.Circle((x[i], y[i]), 0.5, color=cmap(p1[i],p2[i]))
    ax.add_artist(circle)
    tx="p1: {}\np2: {}".format(p1[i],p2[i]) # create a label
    ax.text(x[i], y[i], tx, ha="center", color="w", va="center")

ax.set_xlim(0,4)
ax.set_ylim(0,4)
ax.set_xlabel("x")
ax.set_ylabel("y")

# create the legend:

plt.subplots_adjust(left=0.1, right=0.65, top=0.85)
cax = fig.add_axes([0.7,0.55,0.3,0.3])
cp1 = np.linspace(0,1)
cp2 = np.linspace(0,1)
Cp1, Cp2 = np.meshgrid(cp1,cp2)
C0 = np.zeros_like(Cp1)
# make RGB image, p1 to red channel, p2 to blue channel
Legend = np.dstack((Cp1, C0, Cp2))
# parameters range between 0 and 1
cax.imshow(Legend, origin="lower", extent=[0,1,0,1])
cax.set_xlabel("p1")
cax.set_ylabel("p2")
cax.set_title("2D cmap legend", fontsize=10)

plt.show()

This scheme can of course be extended to other (more complicated) colormappings and also to imshow or pcolormesh plots. Also, the use of the HSV colorscheme may be beneficial compared to the RGB, so matplotlib.colors.hsv_to_rgb(hsv) might be helpful.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!