Tensorflow's asymmetric padding assumptions

时间秒杀一切 提交于 2019-11-29 14:16:46

问题


Why has TensorFlow chosen to prefer padding on the bottom right?

With SAME padding, to me it would feel logical to start the kernel's center anchor at the first real pixel. Due to the use of asymmetric padding, this results in a discrepancy with some other frameworks. I do understand that asymmetric padding in principle is good because otherwise one would be left with an unused padding row/column.

If TensorFlow would have given presedence to padding on the left and top, it would do convolutions and weights the same as Caffe/cudnn/$frameworks, and weight conversion would be compatible regardless of padding.

Code:

import numpy as np
import tensorflow as tf
import torch
import torch.nn as nn

tf.enable_eager_execution()

def conv1d_tf(data, kernel_weights, stride):
    filters = np.reshape(kernel_weights, [len(kernel_weights), 1, 1])
    out = tf.nn.conv1d(
        value=data,
        filters=filters,
        stride=stride,
        padding='SAME',
        data_format='NCW',
        )
    return out


def conv1d_pytorch(data, kernel_weights, stride):
    filters = np.reshape(kernel_weights, [1, 1, len(kernel_weights)])
    kernel_size = len(kernel_weights)
    size = data.shape[-1]
    def same_padding(size, kernel_size, stride, dilation):
        padding = ((size - 1) * (stride - 1) + dilation * (kernel_size - 1)) //2
        return padding
    padding = same_padding(size=size, kernel_size=kernel_size, stride=stride, dilation=0)
    conv = nn.Conv1d(
        in_channels=1,
        out_channels=1,
        kernel_size=kernel_size,
        stride=stride,
        bias=False,
        padding=padding,
        )
    conv.weight = torch.nn.Parameter(torch.from_numpy(filters))
    return conv(torch.from_numpy(data))


data = np.array([[[1, 2, 3, 4]]], dtype=np.float32)
kernel_weights = np.array([0, 1], dtype=np.float32)
stride = 2

out_tf = conv1d_tf(data=data, kernel_weights=kernel_weights, stride=stride)
out_pytorch = conv1d_pytorch(data=data, kernel_weights=kernel_weights, stride=stride)

print('TensorFlow: %s' % out_tf)
print('pyTorch: %s' % out_pytorch)

Output:

TensorFlow: tf.Tensor([[[2. 4.]]], shape=(1, 1, 2), dtype=float32)
pyTorch: tensor([[[1., 3.]]], grad_fn=<SqueezeBackward1>)

回答1:


This is for historical compatibility reasons with previous (non-public) frameworks. It is unfortunate that the definitions aren't clearer, since it's a common stumbling block when porting between different libraries.



来源:https://stackoverflow.com/questions/42924324/tensorflows-asymmetric-padding-assumptions

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!