Fast Point Feature Histograms (FPFH)
执行效率慢,占用大量CPU,最终计算PFH的点云大小和输入的点云大小相同,即fpfhs->points.size() s= cloud->points.size()
http://www.pointclouds.org/documentation/tutorials/fpfh_estimation.php#fpfh-estimation
#include <pcl/features/fpfh_omp.h>
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
// Create the FPFH estimation class, and pass the input dataset+normals to it
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh;
//使用OMP多线程加速执行,待验证
//pcl::FPFHEstimationOMP<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh;
//fpfh.setNumberOfThreads(8);
fpfh.setInputCloud(cloud);
fpfh.setInputNormals(normals);
// alternatively, if cloud is of tpe PointNormal, do fpfh.setInputNormals (cloud);
// Create an empty kdtree representation, and pass it to the FPFH estimation object.
// Its content will be filled inside the object, based on the given input dataset (as no other search surface is given).
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
fpfh.setSearchMethod(tree);
// Output datasets
pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs(new pcl::PointCloud<pcl::FPFHSignature33>());
// Use all neighbors in a sphere of radius 5cm
// IMPORTANT: the radius used here has to be larger than the radius used to estimate the surface normals!!!
fpfh.setRadiusSearch(0.05);
// Compute the features
fpfh.compute(*fpfhs);
在计算FPFH时,考虑到效率的问题,没有对法向量进行空和无穷大检测,因此在计算FPH前需要进行法向量的判断,使用如下代码:
for (int i = 0; i < normals->points.size(); i++)
{
if (!pcl::isFinite<pcl::Normal>(normals->points[i]))
{
PCL_WARN("normals[%d] is not finite\n", i);
}
}
来源:oschina
链接:https://my.oschina.net/u/4228078/blog/3134885