我们枚举段的起点和终点, 那么每一种情况0的范围是[lx, rx], 1的出现范围是[ly, ry], 可以在二维平面上用矩形表示。
然后问题就变成了询问点有没有被至少一个矩形覆盖, 扫描线 + 树状数组就可以了。
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
#define LL long long
#define LD long double
#define ull unsigned long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end()
#define fio ios::sync_with_stdio(false); cin.tie(0);
using namespace std;
const int N = 3e6 + 7;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = (int)1e9 + 7;
const double eps = 1e-8;
const double PI = acos(-1);
template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < 0) a += mod;}
template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;}
struct Line {
LL x, y1, y2;
bool operator < (const Line &rhs) const {
return x < rhs.x;
}
int w;
};
struct Qus {
bool operator < (const Qus &rhs) const {
return x < rhs.x;
}
LL x, y, id;
};
LL hs[N], hs_cnt;
struct Bit {
int a[N];
void init() {
for(int i = 1; i <= hs_cnt; i++) {
a[i] = 0;
}
}
inline void modify(int x, int v) {
for(int i = x; i <= hs_cnt; i += i & -i) {
a[i] += v;
}
}
inline int sum(int x) {
int ans = 0;
for(int i = x; i; i -= i & -i) {
ans += a[i];
}
return ans;
}
};
int n, m, mx[2], a[N], ans[N];
LL sum[2][N];
int L_cnt;
Line L[N];
int Q_cnt;
Qus Q[N];
Bit bit;
void init() {
mx[0] = mx[1] = 0;
L_cnt = Q_cnt = hs_cnt = 0;
}
int main() {
int T;
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &m);
init();
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
sum[0][i] = sum[0][i - 1];
sum[1][i] = sum[1][i - 1];
sum[!(i & 1)][i] += a[i];
chkmax(mx[!(i & 1)], a[i]);
}
for(int i = 1; i <= n; i++) {
for(int j = i + 1; j <= n; j++) {
LL lx = 0, ly = 0, rx = 0, ry = 0;
if(i + 1 < j) {
lx = sum[0][j - 1] - sum[0][i];
ly = sum[1][j - 1] - sum[1][i];
}
rx = lx; ry = ly;
if(i & 1) rx += a[i];
else ry += a[i];
if(j & 1) rx += a[j];
else ry += a[j];
L[++L_cnt] = Line{lx, ly, ry, 1};
L[++L_cnt] = Line{rx + 1, ly, ry, -1};
hs[++hs_cnt] = ly;
hs[++hs_cnt] = ry;
}
}
for(int i = 1; i <= m; i++) {
LL x, y; scanf("%lld%lld", &x, &y);
if(!x) {
ans[i] = mx[1] >= y;
}
else if(!y) {
ans[i] = mx[0] >= x;
}
else {
hs[++hs_cnt] = y;
Q[++Q_cnt] = Qus{x, y, i};
}
}
sort(hs + 1, hs + 1 + hs_cnt);
hs_cnt = unique(hs + 1, hs + 1 + hs_cnt) - hs - 1;
bit.init();
for(int i = 1; i <= L_cnt; i++) {
L[i].y1 = lower_bound(hs + 1, hs + 1 + hs_cnt, L[i].y1) - hs;
L[i].y2 = lower_bound(hs + 1, hs + 1 + hs_cnt, L[i].y2) - hs;
}
for(int i = 1; i <= Q_cnt; i++) {
Q[i].y = lower_bound(hs + 1, hs + 1 + hs_cnt, Q[i].y) - hs;
}
sort(L + 1, L + 1 + L_cnt);
sort(Q + 1, Q + 1 + Q_cnt);
for(int i = 1, j = 1; i <= Q_cnt; i++) {
while(j <= L_cnt && L[j].x <= Q[i].x) {
bit.modify(L[j].y1, L[j].w);
bit.modify(L[j].y2 + 1, -L[j].w);
j++;
}
ans[Q[i].id] = bit.sum(Q[i].y);
}
for(int i = 1; i <= m; i++) {
putchar(ans[i] ? '1' : '0');
}
puts("");
}
return 0;
}
/*
*/