题意:给定一个无向图,删除某些边有一定的代价,要求删掉使得最短路径减小,求最小代价。
分析:首先要spfa求出起点到各个点的最短距离。对于一条权值为w,起点为i,终点为j的边,设dis[k]为起点到k点的距离,若dis[j]=dis[i]+w,则将该边加入另一个图里,边的容量为删除这条边的代价,则从起点到终点的最大流即为答案。。
1、首先最短路径一定在最短路图上
2、如果起点和终点不联通,就不存在这样一条最短路径,所以最短路径一定会变大;
注意看范围。。wa17发

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<queue>
using namespace std;
typedef long long ll;
const ll INF=1e18;
const int M=1e4+4;
struct node{
ll u,v,nextt;
ll w;
}g[M<<2],e[M<<2];
ll s,t,tot1,tot2,cur[M],head1[M],head2[M],vis[M],deep[M];
ll dis[M];
void addedge1(ll u,ll v,ll w){
g[tot1].u=u;
g[tot1].v=v;
g[tot1].w=w;
g[tot1].nextt=head1[u];
head1[u]=tot1++;
}
void addedge2(ll u,ll v,ll w){
e[tot2].v=v;
e[tot2].w=w;
e[tot2].nextt=head2[u];
head2[u]=tot2++;
e[tot2].v=u;
e[tot2].w=0;
e[tot2].nextt=head2[v];
head2[v]=tot2++;
}
void dij(){
for(int i=0;i<=t;i++)
dis[i]=INF;
// cout<<"!!"<<endl;
queue<int>que;
que.push(s);
dis[s]=0;
while(!que.empty()){
ll u=que.front();
que.pop();
vis[u]=0;
for(ll i=head1[u];~i;i=g[i].nextt){
ll v=g[i].v;
if(dis[v]>dis[u]+g[i].w){
dis[v]=dis[u]+g[i].w;
if(!vis[v]){
vis[v]=1;
que.push(v);
}
}
}
}
}
ll dd[M];
bool bfs(){
memset(deep,0,sizeof(deep));
queue<int>que;
que.push(s);
deep[s]=1;
while(!que.empty()){
int u=que.front();
que.pop();
for(int i=head2[u];i!=-1;i=e[i].nextt){
int v=e[i].v;
if(e[i].w>0&&deep[v]==0){
deep[v]=deep[u]+1;
if(v==t)
return true;
que.push(v);
}
}
}
return deep[t]==0?false:true;
}
ll dfs(ll u,ll fl){
if(u==t)
return fl;
ll ans=0,x=0;
for(int i=cur[u];i!=-1;i=e[i].nextt){
ll v=e[i].v;
if(e[i].w>0&&deep[v]==deep[u]+1){
x=dfs(v,min(e[i].w,fl-ans));
e[i].w-=x;
e[i^1].w+=x;
if(e[i].w)
cur[u]=i;
ans+=x;
if(ans==fl)
return ans;
}
}
if(ans==0)
deep[u]=0;
return ans;
}
ll dinic(){
ll ans=0;
while(bfs()){
for(int i=0;i<=t;i++)
cur[i]=head2[i];
ans+=dfs(s,INF);
}
return ans;
}
int main(){
ll test;
scanf("%lld",&test);
while(test--){
ll n,m;
tot1=tot2=0;
scanf("%lld%lld",&n,&m);
// cout<<tot1<<"!!"<<tot2<<endl;
s=1,t=n;
for(int i=0;i<=n;i++)
head1[i]=head2[i]=-1,vis[i]=0;
while(m--){
ll u,v;
ll w;
scanf("%lld%lld%lld",&u,&v,&w);
addedge1(u,v,w);
}
dij();
// for(int i=1;i<=n;i++)
// cout<<dis[i]<<endl;
for (int i = 1; i <= n; i++)
for (int j = head1[i]; ~j;j = g[j].nextt)
if (dis[g[j].u] + g[j].w == dis[g[j].v])
addedge2(g[j].u,g[j].v,g[j].w);
printf("%lld\n",dinic());
}
return 0;
}
