Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1 3 / \ 1 4 \ 2 Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
class Solution {
public int kthSmallest(TreeNode root, int k) {
List<Integer> list = new ArrayList();
help(list, root);
Collections.sort(list);
return list.get(k - 1);
}
public void help(List<Integer> list, TreeNode root){
if(root == null) return;
list.add(root.val);
help(list, root.left);
help(list, root.right);
}
}
遍历,存到list,sort,然后get
public class Solution {
public int kthSmallest(TreeNode root, int k) {
Stack<TreeNode> s = new Stack<>();
TreeNode p = root;
while (!s.empty() || p != null) {
if (p != null) {
s.push(p);
p = p.left;
} else {
p = s.pop();
--k;
if (k == 0) {
return p.val;
}
p = p.right;
}
}
return -1;
}
}
中序(左根右遍历)存入stack,