P4316 绿豆蛙的归宿 期望DP
DAG上,每条边有边权,走向相连每条路的概率相等,问从起点到终点所经过的路径总长度期望
因为发现终点走到终点期望为0,定义\(f[i]\)从终点走到\(i\)所经过的路径总长度期望,所以\(f[n]=0\)。于是建反图,拓扑转移
\[
f[v]+=\frac{w+f[u]}{edg[v]}
\]
\(edg[v]\)表示从节点\(v\)有\(edg[v]\)条路可走
#include <cstdio> #include <queue> #define MAXN 100010 using namespace std; int head[MAXN],nxt[MAXN*2],vv[MAXN*2],ww[MAXN*2],tot; inline void add_edge(const int &u, const int &v, const int &w){ vv[++tot]=v; ww[tot]=w; nxt[tot]=head[u]; head[u]=tot; } int read(){ char ch;int s=0; ch = getchar(); while(ch<'0'||ch>'9') ch=getchar(); while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar(); return s; } int rdu[MAXN],edg[MAXN],n,m; double f[MAXN]; queue <int> q; int main(){ n=read(),m=read(); for(int i=1;i<=m;++i){ int u,v,w; u=read(),v=read(),w=read(); add_edge(v, u, w); ++edg[u];++rdu[u]; } q.push(n); while(!q.empty()){ int u=q.front();q.pop(); for(int i=head[u];i;i=nxt[i]){ int v=vv[i],w=ww[i]; f[v]+=(w+f[u])/edg[v]; --rdu[v]; if(rdu[v]==0) q.push(v); } } printf("%.2f\n", f[1]); return 0; }