numpy on multicore hardware

我是研究僧i 提交于 2019-11-29 01:26:00

You should probably start by checking whether the Atlas build that numpy is using has been built with multi-threading. You can build and run this to inspect the Atlas configuration (straight from the Atlas FAQ):

main()
/*
 * Compile, link and run with something like:
 *    gcc -o xprint_buildinfo -L[ATLAS lib dir] -latlas ; ./xprint_buildinfo
 * if link fails, you are using ATLAS version older than 3.3.6.
 */
{
   void ATL_buildinfo(void);
   ATL_buildinfo();
   exit(0);
}

If you have don't have a multithreaded version of Atlas: "there's your problem". If it is multithreaded, then you need to exercise one of the multithreaded BLAS3 routines (probably dgemm), with a suitably large matrix-matrix product and see whether threading is used. I think I am right in saying that neither BLAS 2 and BLAS 1 routines in Atlas support multithreading (and with good reason because there is no performance advantage except at truly enormous problem sizes).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!