Stanford Named Entity Recognizer (NER) functionality with NLTK

耗尽温柔 提交于 2019-11-28 20:51:44

nltk DOES have an interface for Stanford NER, check nltk.tag.stanford.NERTagger.

from nltk.tag.stanford import NERTagger
st = NERTagger('/usr/share/stanford-ner/classifiers/all.3class.distsim.crf.ser.gz',
               '/usr/share/stanford-ner/stanford-ner.jar') 
st.tag('Rami Eid is studying at Stony Brook University in NY'.split()) 

output:

[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'),
('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook', 'ORGANIZATION'),
('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'LOCATION')]

However every time you call tag, nltk simply writes the target sentence into a file and runs Stanford NER command line tool to parse that file and finally parses the output back to python. Therefore the overhead of loading classifiers (around 1 min for me every time) is unavoidable.

If that's a problem, use Pyner.

First run Stanford NER as a server

java -mx1000m -cp stanford-ner.jar edu.stanford.nlp.ie.NERServer \
-loadClassifier classifiers/english.all.3class.distsim.crf.ser.gz -port 9191

then go to pyner folder

import ner
tagger = ner.SocketNER(host='localhost', port=9191)
tagger.get_entities("University of California is located in California, United States")
# {'LOCATION': ['California', 'United States'],
# 'ORGANIZATION': ['University of California']}
tagger.json_entities("Alice went to the Museum of Natural History.")
#'{"ORGANIZATION": ["Museum of Natural History"], "PERSON": ["Alice"]}'

Hope this helps.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!