TensorFlow: “Attempting to use uninitialized value” in variable initialization

百般思念 提交于 2019-11-28 19:07:18

It's not 100% clear from the code example, but if the list initial_parameters_of_hypothesis_function is a list of tf.Variable objects, then the line session.run(init) will fail because TensorFlow isn't (yet) smart enough to figure out the dependencies in variable initialization. To work around this, you should change the loop that creates parameters to use initial_parameters_of_hypothesis_function[i].initialized_value(), which adds the necessary dependency:

parameters = []
for i in range(0, number_of_attributes, 1):
    parameters.append(tf.Variable(
        initial_parameters_of_hypothesis_function[i].initialized_value()))

Run this:

init = tf.global_variables_initializer()
sess.run(init)

Or (depending on the version of TF that you have):

init = tf.initialize_all_variables()
sess.run(init)

There is another the error happening which related to the order when calling initializing global variables. I've had the sample of code has similar error FailedPreconditionError (see above for traceback): Attempting to use uninitialized value W

def linear(X, n_input, n_output, activation = None):
    W = tf.Variable(tf.random_normal([n_input, n_output], stddev=0.1), name='W')
    b = tf.Variable(tf.constant(0, dtype=tf.float32, shape=[n_output]), name='b')
    if activation != None:
        h = tf.nn.tanh(tf.add(tf.matmul(X, W),b), name='h')
    else:
        h = tf.add(tf.matmul(X, W),b, name='h')
    return h

from tensorflow.python.framework import ops
ops.reset_default_graph()
g = tf.get_default_graph()
print([op.name for op in g.get_operations()])
with tf.Session() as sess:
    # RUN INIT
    sess.run(tf.global_variables_initializer())
    # But W hasn't in the graph yet so not know to initialize 
    # EVAL then error
    print(linear(np.array([[1.0,2.0,3.0]]).astype(np.float32), 3, 3).eval())

You should change to following

from tensorflow.python.framework import ops
ops.reset_default_graph()
g = tf.get_default_graph()
print([op.name for op in g.get_operations()])
with tf.Session() as 
    # NOT RUNNING BUT ASSIGN
    l = linear(np.array([[1.0,2.0,3.0]]).astype(np.float32), 3, 3)
    # RUN INIT
    sess.run(tf.global_variables_initializer())
    print([op.name for op in g.get_operations()])
    # ONLY EVAL AFTER INIT
    print(l.eval(session=sess))
Gao Yin

I want to give my resolution, it work when i replace the line [session = tf.Session()] with [sess = tf.InteractiveSession()]. Hope this will be useful to others.

Normally there are two ways of initializing variables, 1) using the sess.run(tf.global_variables_initializer()) as the previous answers noted; 2) the load the graph from checkpoint.

You can do like this:

sess = tf.Session(config=config)
saver = tf.train.Saver(max_to_keep=3)
try:
    saver.restore(sess, tf.train.latest_checkpoint(FLAGS.model_dir))
    # start from the latest checkpoint, the sess will be initialized 
    # by the variables in the latest checkpoint
except ValueError:
    # train from scratch
    init = tf.global_variables_initializer()
    sess.run(init)

And the third method is to use the tf.train.Supervisor. The session will be

Create a session on 'master', recovering or initializing the model as needed, or wait for a session to be ready.

sv = tf.train.Supervisor([parameters])
sess = sv.prepare_or_wait_for_session()

run both:

sess.run(tf.global_variables_initializer())

sess.run(tf.local_variables_initializer())

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!