题目链接:https://vjudge.net/problem/POJ-3714
题意:给定两个点集,求最短距离。
思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f为-1,那么求两个点的距离时,如果a.f*b.f=-1时计算距离,否则乘积为1的话返回inf。其它就和hdoj1007一样了.
AC代码:
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstdlib>
using namespace std;
const int maxn=2e5+5;
const double inf=1e30;
int T,n,cnt,id[maxn];
struct node{
int x,y,f;
}pt[maxn];
bool operator < (const node& a,const node& b){
if(a.x==b.x) return a.y<b.y;
return a.x<b.x;
}
bool cmp(int a,int b){
return pt[a].y<pt[b].y;
}
double dist(const node& a,const node& b){
if(a.f*b.f==1) return inf;
return sqrt(1.0*(a.x-b.x)*(a.x-b.x)+1.0*(a.y-b.y)*(a.y-b.y));
}
double fenzhi(int l,int r){
double d=inf;
if(l==r) return d;
if(l+1==r) return dist(pt[l],pt[r]);
int mid=(l+r)>>1;
d=min(fenzhi(l,mid),fenzhi(mid+1,r));
cnt=0;
int t1,t2,l1=l,r1=mid,mid1;
while(l1<=r1){
mid1=(l1+r1)>>1;
if(pt[mid].x-pt[mid1].x<d) r1=mid1-1;
else l1=mid1+1;
}
t1=l1;
l1=mid+1,r1=r;
while(l1<=r1){
mid1=(l1+r1)>>1;
if(pt[mid1].x-pt[mid].x<d) l1=mid1+1;
else r1=mid1-1;
}
t2=r1;
for(int i=t1;i<=t2;++i)
id[++cnt]=i;
sort(id+1,id+cnt+1,cmp);
for(int i=1;i<cnt;++i)
for(int j=i+1;j<=cnt&&(pt[id[j]].y-pt[id[i]].y<d);++j)
d=min(d,dist(pt[id[i]],pt[id[j]]));
return d;
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=1;i<=2*n;++i){
scanf("%d%d",&pt[i].x,&pt[i].y);
if(i<=n) pt[i].f=1;
else pt[i].f=-1;
}
sort(pt+1,pt+1+2*n);
printf("%.3f\n",fenzhi(1,2*n));
}
return 0;
}