How to move pandas data from index to column after multiple groupby

狂风中的少年 提交于 2019-11-26 06:37:53

问题


I have the following pandas dataframe:

dfalph.head()

token    year    uses  books
  386   xanthos  1830    3     3
  387   xanthos  1840    1     1
  388   xanthos  1840    2     2
  389   xanthos  1868    2     2
  390   xanthos  1875    1     1

I aggregate the rows with duplicate token and years like so:

dfalph = dfalph[[\'token\',\'year\',\'uses\',\'books\']].groupby([\'token\', \'year\']).agg([np.sum])
dfalph.columns = dfalph.columns.droplevel(1)
dfalph.head()

               uses  books
token    year       
xanthos  1830    3     3
         1840    3     3
         1867    2     2
         1868    2     2
         1875    1     1

Instead of having the \'token\' and \'year\' fields in the index, I would like to return them to columns and have an integer index.


回答1:


Method #1: reset_index()

>>> g
              uses  books
               sum    sum
token   year             
xanthos 1830     3      3
        1840     3      3
        1868     2      2
        1875     1      1

[4 rows x 2 columns]
>>> g = g.reset_index()
>>> g
     token  year  uses  books
                   sum    sum
0  xanthos  1830     3      3
1  xanthos  1840     3      3
2  xanthos  1868     2      2
3  xanthos  1875     1      1

[4 rows x 4 columns]

Method #2: don't make the index in the first place, using as_index=False

>>> g = dfalph[['token', 'year', 'uses', 'books']].groupby(['token', 'year'], as_index=False).sum()
>>> g
     token  year  uses  books
0  xanthos  1830     3      3
1  xanthos  1840     3      3
2  xanthos  1868     2      2
3  xanthos  1875     1      1

[4 rows x 4 columns]



回答2:


I defer form the accepted answer. While there are 2 ways to do this, these will not necessarily result in same output. Specially when you are using Grouper in groupby

  • index=False
  • reset_index()

example df

+---------+---------+-------------+------------+
| column1 | column2 | column_date | column_sum |
+---------+---------+-------------+------------+
| A       | M       | 26-10-2018  |          2 |
| B       | M       | 28-10-2018  |          3 |
| A       | M       | 30-10-2018  |          6 |
| B       | M       | 01-11-2018  |          3 |
| C       | N       | 03-11-2018  |          4 |
+---------+---------+-------------+------------+

They do not work the same way.

df = df.groupby(
    by=[
        'column1',
        'column2',
        pd.Grouper(key='column_date', freq='M')
    ],
    as_index=False
).sum()

The above will give

+---------+---------+------------+
| column1 | column2 | column_sum |
+---------+---------+------------+
| A       | M       |          8 |
| B       | M       |          3 |
| B       | M       |          3 |
| C       | N       |          4 |
+---------+---------+------------+

While,

df = df.groupby(
    by=[
        'column1',
        'column2',
        pd.Grouper(key='column_date', freq='M')
    ]
).sum().reset_index()

Will give

+---------+---------+-------------+------------+
| column1 | column2 | column_date | column_sum |
+---------+---------+-------------+------------+
| A       | M       | 31-10-2018  |          8 |
| B       | M       | 31-10-2018  |          3 |
| B       | M       | 30-11-2018  |          3 |
| C       | N       | 30-11-2018  |          4 |
+---------+---------+-------------+------------+



回答3:


You need to add drop=True:

df.reset_index(drop=True)

df = df.groupby(
    by=[
        'column1',
        'column2',
        pd.Grouper(key='column_date', freq='M')
    ]
).sum().reset_index(drop=True)


来源:https://stackoverflow.com/questions/21767900/how-to-move-pandas-data-from-index-to-column-after-multiple-groupby

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!