1、新建Java项目
2、导包
E:\工具\大数据\大数据提升资料\01-软件资料\06-Hadoop\安装包\Java1.8
环境下编译\hadoop-2.7.3\hadoop-2.7.3\share\hadoop\mapreduce
+hsfs的那些包+common
3、写项目
3.1 WCMapper
package com.zy.wc;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
//map
/*
* 输入<0,"tom lili tom"> 输出<"tom",1>
* */
//public class WCMapper extends Mapper<KEYIN, VALUEIN, KEYOUT,VALUEOUT>
// 输入的key long value String 输出的 key String value long类型
@Override //数字 //string
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
//输入的value是一行字符串"tom lili tom"
//切分
String[] split = value.toString().split("\t");
for (String name : split) {
//mapper输出内容
context.write(new Text(name), new LongWritable(1));
}
}
}
3.2 WCReduce
package com.zy.wc;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.WordCount.Reduce;
import org.apache.hadoop.mapreduce.Reducer;
public class WCReduce extends Reducer<Text,LongWritable,Text,LongWritable>{
//输入<"tom",{1,1,1,1,1,1,1}> 输出<"tom",7>
@Override //输入键 //输入值
protected void reduce(Text key, Iterable<LongWritable> value,
Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
//计算迭代其中1的累加值
long sum=0;
for (LongWritable longWritable : value) {
sum+=1;
}
//输出的键值
context.write(key, new LongWritable(sum));
}
}
3.3 WCApp
package com.zy.wc;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WCApp {
public static void main(String[] args) throws Exception {
//创建配置对象
Configuration configuration = new Configuration();
//得到job实例
Job job = Job.getInstance(configuration);
//指定job运行类
job.setJarByClass(WCApp.class);
//指定job中的mapper
job.setMapperClass(WCMapper.class);
//指定mapper中的输出键和值类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//指定job中的reducer
job.setReducerClass(WCReduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//指定输入文件
FileInputFormat.setInputPaths(job, new Path("/wc.txt"));
//指定输出文件
FileOutputFormat.setOutputPath(job, new Path("/myWCResult"));
//提交作业
job.waitForCompletion(true);
}
}
4、打包上传
把项目打包 (java打成jar包,web项目打成war包),上传到linux,然后hadoop jar WCAPP.jar运行jar包