李宏毅 线性回归预测PM2.5

青春壹個敷衍的年華 提交于 2019-11-28 08:13:22

作业说明

  给定训练集train.csv,要求根据前9个小时的空气监测情况预测第10个小时的PM2.5含量。

训练集介绍:

  (1):CSV文件,包含台湾丰原地区240天的气象观测资料(取每个月前20天的数据做训练集,12月X20天=240天,每月后10天数据用于测试,对学生不可见);

  (2):每天的监测时间点为0时,1时......到23时,共24个时间节点;

  (3):每天的检测指标包括CO、NO、PM2.5、PM10等气体浓度,是否降雨、刮风等气象信息,共计18项;

       (4):数据集https://github.com/datawhalechina/leeml-notes/blob/master/docs/Homework/HW_1/Dataset

 

数据处理

【下文中提到的“数据帧”并非指pandas库中的数据结构DataFrame,而是指一个二维的数据包】

根据作业要求可知,需要用到连续9个时间点的气象观测数据,来预测第10个时间点的PM2.5含量。针对每一天来说,其包含的信息维度为(18,24)(18项指标,24个时间节点)。可以将0到8时的数据截

取出来,形成一个维度为(18,9)的数据帧,作为训练数据,将9时的PM2.5含量取出来,作为该训练数据对应的label;同理可取1到9时的数据作为训练用的数据帧,10时的PM2.5含量作为label......以此

分割,可将每天的信息分割为15个shape为(18,9)的数据帧和与之对应的15个label。

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!