How to count record changes for a particular value of a column in a scala Dataframe

拈花ヽ惹草 提交于 2021-02-08 07:39:08

问题


In a dataframe the columns have the input shown below:

    | id|  priority|         status|       datetime|data_as_of_Date|Amount|open_close|
    |  1|Unassigned|          Fixed| 10/8/2019 0:00| 2/12/2020 0:00|    40|    Closed|
    |  1|Unassigned|            New|2/12/2019 11:00| 2/12/2020 0:00|    20|      Open|
    |  1|Unassigned|Fix in progress|9/12/2019 11:00| 2/12/2020 0:00|    90|      Open|
    |  3|  Critical|        Removed|5/17/2019 12:00| 2/12/2020 0:00|    33|    Closed|
    |  3|Unassigned|Fix in progress|5/26/2019 10:00| 2/12/2020 0:00|    30|      Open|
    |  3|  Critical|            New|  5/8/2019 3:00| 2/12/2020 0:00|    34|      Open|
    |  3|Unassigned|          Fixed| 7/29/2019 7:00| 2/12/2020 0:00|    29|    Closed|

How would I calculate the count of how many times the open_close column got changed per company?


回答1:


You can use window functions to add row number using your date column. Then use lag function to create a new column that shifts down one position and if open_close value is different than the previous one puts '1' otherwise putting '0'. Finally, group by company id and sum changes marked as 1.

val df2 = df.withColumn("row_num",row_number.over(Window.orderBy('datetime).partitionBy('id)))
val df3 = df2.select('*,lag('open_close, 1, 0).over(Window.orderBy('row_num).partitionBy('id)).as("lag"))
val df4 = df3.select('*,when('open_close === 'lag || 'lag === 0 , 0).otherwise(1).as("change"))
df4.groupBy('id).agg(sum('change)).show()

+---+-----------+
| id|sum(change)|
+---+-----------+
|  1|          1|
|  3|          2|
+---+-----------+


来源:https://stackoverflow.com/questions/61687176/how-to-count-record-changes-for-a-particular-value-of-a-column-in-a-scala-datafr

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!