问题
I have a DataFrame (df) that looks like the following:
+----------+----+
| dd_mm_yy | id |
+----------+----+
| 01-03-17 | A |
| 01-03-17 | B |
| 01-03-17 | C |
| 01-05-17 | B |
| 01-05-17 | D |
| 01-07-17 | A |
| 01-07-17 | D |
| 01-08-17 | C |
| 01-09-17 | B |
| 01-09-17 | B |
+----------+----+
This the end result i would like to compute:
+----------+----+-----------+
| dd_mm_yy | id | cum_count |
+----------+----+-----------+
| 01-03-17 | A | 1 |
| 01-03-17 | B | 1 |
| 01-03-17 | C | 1 |
| 01-05-17 | B | 2 |
| 01-05-17 | D | 1 |
| 01-07-17 | A | 2 |
| 01-07-17 | D | 2 |
| 01-08-17 | C | 1 |
| 01-09-17 | B | 2 |
| 01-09-17 | B | 3 |
+----------+----+-----------+
Logic
To calculate the cumulative occurrences of values in id but within a specified time window, for example 4 months. i.e. every 5th month the counter resets to one.
To get the cumulative occurences we can use this df.groupby('id').cumcount() + 1
Focusing on id = B we see that the 2nd occurence of B is after 2 months so the cum_count = 2. The next occurence of B is at 01-09-17, looking back 4 months we only find one other occurence so cum_count = 2, etc.
回答1:
My approach is to call a helper function from df.groupby('id').transform. I feel this is more complicated and slower than it could be, but it seems to work.
# test data
date id cum_count_desired
2017-03-01 A 1
2017-03-01 B 1
2017-03-01 C 1
2017-05-01 B 2
2017-05-01 D 1
2017-07-01 A 2
2017-07-01 D 2
2017-08-01 C 1
2017-09-01 B 2
2017-09-01 B 3
# preprocessing
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)
# Encode the ID strings to numbers to have a column
# to work with after grouping by ID
df['id_code'] = pd.factorize(df['id'])[0]
# solution
def cumcounter(x):
y = [x.loc[d - pd.DateOffset(months=4):d].count() for d in x.index]
gr = x.groupby('date')
adjust = gr.rank(method='first') - gr.size()
y += adjust
return y
df['cum_count'] = df.groupby('id')['id_code'].transform(cumcounter)
# output
df[['id', 'id_num', 'cum_count_desired', 'cum_count']]
id id_num cum_count_desired cum_count
date
2017-03-01 A 0 1 1
2017-03-01 B 1 1 1
2017-03-01 C 2 1 1
2017-05-01 B 1 2 2
2017-05-01 D 3 1 1
2017-07-01 A 0 2 2
2017-07-01 D 3 2 2
2017-08-01 C 2 1 1
2017-09-01 B 1 2 2
2017-09-01 B 1 3 3
The need for adjust
If the same ID occurs multiple times on the same day, the slicing approach that I use will overcount each of the same-day IDs, because the date-based slice immediately grabs all of the same-day values when the list comprehension encounters the date on which multiple IDs show up. Fix:
- Group the current DataFrame by date.
- Rank each row in each date group.
- Subtract from these ranks the total number of rows in each date group. This produces a date-indexed Series of ascending negative integers, ending at 0.
- Add these non-positive integer adjustments to
y.
This only affects one row in the given test data -- the second-last row, because B appears twice on the same day.
Including or excluding the left endpoint of the time interval
To count rows as old as or newer than 4 calendar months ago, i.e., to include the left endpoint of the 4-month time interval, leave this line unchanged:
y = [x.loc[d - pd.DateOffset(months=4):d].count() for d in x.index]
To count rows strictly newer than 4 calendar months ago, i.e., to exclude the left endpoint of the 4-month time interval, use this instead:
y = [d.loc[d - pd.DateOffset(months=4, days=-1):d].count() for d in x.index]
回答2:
You can extend the groupby with a grouper:
df['cum_count'] = df.groupby(['id', pd.Grouper(freq='4M', key='date')]).cumcount()
Out[48]:
date id cum_count
0 2017-03-01 A 0
1 2017-03-01 B 0
2 2017-03-01 C 0
3 2017-05-01 B 0
4 2017-05-01 D 0
5 2017-07-01 A 0
6 2017-07-01 D 1
7 2017-08-01 C 0
8 2017-09-01 B 0
9 2017-09-01 B 1
回答3:
We can make use of .apply row-wise to work on sliced df as well. Sliced will be based on the use of relativedelta from dateutil.
def get_cum_sum (slice, row):
if slice.shape[0] == 0:
return 1
return slice[slice['id'] == row.id].shape[0]
d={'dd_mm_yy':['01-03-17','01-03-17','01-03-17','01-05-17','01-05-17','01-07-17','01-07-17','01-08-17','01-09-17','01-09-17'],'id':['A','B','C','B','D','A','D','C','B','B']}
df=pd.DataFrame(data=d)
df['dd_mm_yy'] = pd.to_datetime(df['dd_mm_yy'], format='%d-%m-%y')
df['cum_sum'] = df.apply(lambda current_row: get_cum_sum(df[(df.index <= current_row.name) & (df.dd_mm_yy >= (current_row.dd_mm_yy - relativedelta(months=+4)))],current_row),axis=1)
>>> df
dd_mm_yy id cum_sum
0 2017-03-01 A 1
1 2017-03-01 B 1
2 2017-03-01 C 1
3 2017-05-01 B 2
4 2017-05-01 D 1
5 2017-07-01 A 2
6 2017-07-01 D 2
7 2017-08-01 C 1
8 2017-09-01 B 2
9 2017-09-01 B 3
Thinking if it is feasible to use .rolling but months are not a fixed period thus might not work.
来源:https://stackoverflow.com/questions/48098128/counting-cumulative-occurrences-of-values-based-on-date-window-in-pandas