问题
Consider below df:
In [3771]: df = pd.DataFrame({'A': ['a'] * 11,
'B': ['b'] * 11,
'C': ['C1', 'C1', 'C2','C1', 'C3', 'C3', 'C2', 'C3', 'C3', 'C2', 'C2'],
'D': ['D1', 'D2', 'D1', 'D3', 'D3', 'D2', 'D4', 'D4', 'D1', 'D2', 'D3'],
'E': [{'value': '4', 'percentage': None}, {'value': 5, 'percentage': None}, {'value': 12, 'percentage': None}, {'value': 5, 'percentage': None}, {'value': '12', 'percentage': None}, {'value': 'N/A', 'percentage': None}, {}, {'value': 19, 'percentage': None}, {'value': 12, 'percentage': None}, {'value': 11, 'percentage': None}, np.nan],
'F':[{'value': 72, 'percentage': None}, {'value': 72, 'percentage': None}, {'value': 66, 'percentage': None}, {'value': 62, 'percentage': None}, {'value': 66, 'percentage': None}, {'value': 16, 'percentage': None}, {'value': 67, 'percentage': None}, {'value': 67, 'percentage': None}, {'value': 66, 'percentage': None}, {'value': 54, 'percentage': None}, {'value': 78, 'percentage': None}]})
In [3779]: df
Out[3898]:
A B C D E F
0 a b C1 D1 {'value': '4', 'percentage': None} {'value': 72, 'percentage': None}
1 a b C1 D2 {'value': 5, 'percentage': None} {'value': 72, 'percentage': None}
2 a b C2 D1 {'value': 12, 'percentage': None} {'value': 66, 'percentage': None}
3 a b C1 D3 {'value': 5, 'percentage': None} {'value': 62, 'percentage': None}
4 a b C3 D3 {'value': '12', 'percentage': None} {'value': 66, 'percentage': None}
5 a b C3 D2 {'value': 'N/A', 'percentage': None} {'value': 16, 'percentage': None}
6 a b C2 D4 {} {'value': 67, 'percentage': None}
7 a b C3 D4 {'value': 19, 'percentage': None} {'value': 67, 'percentage': None}
8 a b C3 D1 {'value': 12, 'percentage': None} {'value': 66, 'percentage': None}
9 a b C2 D2 {'value': 11, 'percentage': None} {'value': 54, 'percentage': None}
10 a b C2 D3 NaN {'value': 78, 'percentage': None}
I pivot
the above df:
In [3776]: x = df.pivot(['B', 'C', 'D'], 'A', ['E', 'F'])
In [3781]: x
Out[3900]:
E F
A a a
B C D
b C1 D1 {'value': '4', 'percentage': None} {'value': 72, 'percentage': None}
D2 {'value': 5, 'percentage': None} {'value': 72, 'percentage': None}
D3 {'value': 5, 'percentage': None} {'value': 62, 'percentage': None}
C2 D1 {'value': 12, 'percentage': None} {'value': 66, 'percentage': None}
D2 {'value': 11, 'percentage': None} {'value': 54, 'percentage': None}
D3 NaN {'value': 78, 'percentage': None}
D4 {} {'value': 67, 'percentage': None}
C3 D1 {'value': 12, 'percentage': None} {'value': 66, 'percentage': None}
D2 {'value': 'N/A', 'percentage': None} {'value': 16, 'percentage': None}
D3 {'value': '12', 'percentage': None} {'value': 66, 'percentage': None}
D4 {'value': 19, 'percentage': None} {'value': 67, 'percentage': None}
I want to sort the innermost column which is D
for each group of outer columns B
and C
based on the multi-level column with index (E, a)
in descending order based on value
key from dict.
EDIT:
The dict
can have value
key with mixed datatypes. It can be int, str, NaN or simply unavailable.
Expected Output:
E F
A a a
B C D
b C1 D2 {'value': 5, 'percentage': None} {'value': 72, 'percentage': None}
D3 {'value': 5, 'percentage': None} {'value': 62, 'percentage': None}
D1 {'value': '4', 'percentage': None} {'value': 72, 'percentage': None}
C2 D1 {'value': 12, 'percentage': None} {'value': 66, 'percentage': None}
D2 {'value': 11, 'percentage': None} {'value': 54, 'percentage': None}
D4 {} {'value': 67, 'percentage': None}
D3 NaN {'value': 78, 'percentage': None}
C3 D4 {'value': 19, 'percentage': None} {'value': 67, 'percentage': None}
D1 {'value': 12, 'percentage': None} {'value': 66, 'percentage': None}
D3 {'value': '12', 'percentage': None} {'value': 66, 'percentage': None}
D2 {'value': 'N/A', 'percentage': None} {'value': 16, 'percentage': None}
回答1:
Solution with helper MultiIndex column
created by Series.str.get, then sorting by DataFrame.sort_values and last remove helper column:
x[('new', 'a')] = pd.to_numeric(x[('E','a')].str.get('value'), errors='coerce')
lvl = x.index.names[:-1]
order = 'desc'
x = (x.sort_values(lvl + [('new', 'a')],ascending=[True] * len(lvl) + [order == 'asc'])
.drop(('new', 'a'), axis=1))
print (x)
E \
A a
B C D
b C1 D2 {'value': 5, 'percentage': None}
D3 {'value': 5, 'percentage': None}
D1 {'value': '4', 'percentage': None}
C2 D1 {'value': 12, 'percentage': None}
D2 {'value': 11, 'percentage': None}
D3 NaN
D4 {}
C3 D4 {'value': 19, 'percentage': None}
D1 {'value': 12, 'percentage': None}
D3 {'value': '12', 'percentage': None}
D2 {'value': 'N/A', 'percentage': None}
F
A a
B C D
b C1 D2 {'value': 72, 'percentage': None}
D3 {'value': 62, 'percentage': None}
D1 {'value': 72, 'percentage': None}
C2 D1 {'value': 66, 'percentage': None}
D2 {'value': 54, 'percentage': None}
D3 {'value': 78, 'percentage': None}
D4 {'value': 67, 'percentage': None}
C3 D4 {'value': 67, 'percentage': None}
D1 {'value': 66, 'percentage': None}
D3 {'value': 66, 'percentage': None}
D2 {'value': 16, 'percentage': None}
来源:https://stackoverflow.com/questions/65021214/pandas-sort-innermost-column-group-wise-based-on-other-multilevel-column