Transposing a column in a pandas dataframe while keeping other column intact with duplicates

旧城冷巷雨未停 提交于 2019-11-28 01:36:29

Option 1
groupby + apply

v = df.groupby('selection_id').last_traded_price.apply(list)
pd.DataFrame(v.tolist(), index=v.index)

                 0     1     2     3
selection_id                        
430494        1.46  1.48  1.56  1.57
430495        2.45  2.67  2.72  2.87

Option 2
You can do this with pivot, as long as you have another column of counts to pass for the pivoting (it needs to be pivoted along something, that's why).

df['Count'] = df.groupby('selection_id').cumcount()
df.pivot('selection_id', 'Count', 'last_traded_price')

Count            0     1     2     3
selection_id                        
430494        1.46  1.48  1.56  1.57
430495        2.45  2.67  2.72  2.87

You can use cumcount for Counter for new columns names created by set_index + unstack or pandas.pivot:

g = df.groupby('selection_id').cumcount()
df = df.set_index(['selection_id',g])['last_traded_price'].unstack()
print (df)
                 0     1     2     3
selection_id                        
430494        1.46  1.48  1.56  1.57
430495        2.45  2.67  2.72  2.87

Similar solution with pivot:

df = pd.pivot(index=df['selection_id'], 
              columns=df.groupby('selection_id').cumcount(), 
              values=df['last_traded_price'])
print (df)
                 0     1     2     3
selection_id                        
430494        1.46  1.48  1.56  1.57
430495        2.45  2.67  2.72  2.87
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!