问题
I am trying to groupby-aggregate a dataframe using lambda functions that are being created programatically. This so I can simulate a one-hot encoder of the categories present in a column.
Dataframe:
df = pd.DataFrame(np.array([[10, 'A'], [10, 'B'], [20, 'A'],[30,'B']]),
columns=['ID', 'category'])
ID category
10 A
10 B
20 A
30 B
Expected result:
ID A B
10 1 1
20 1 0
30 0 1
What I am trying:
one_hot_columns = ['A','B']
lambdas = [lambda x: 1 if x.eq(column).any() else 0 for column in one_hot_columns]
df_g = df.groupby('ID').category.agg(lambdas)
Result:
ID A B
10 1 1
20 0 0
30 1 1
But the above is not quite the expected result. Not sure what I am doing wrong. I know I could do this with get_dummies, but using lambdas is more convenient for automation. Also, I can ensure the order of the output columns.
回答1:
Use crosstab:
pd.crosstab(df.ID, df['category']).reset_index()
Output:
category ID A B
0 10 1 1
1 20 1 0
2 30 0 1
回答2:
You can use pd.get_dummies with Groupby.sum:
In [4331]: res = pd.get_dummies(df, columns=['category']).groupby('ID', as_index=False).sum()
In [4332]: res
Out[4332]:
ID category_A category_B
0 10 1 1
1 20 1 0
2 30 0 1
OR, use pd.concat with pd.get_dummies:
In [4329]: res = pd.concat([df, pd.get_dummies(df.category)], axis=1).groupby('ID', as_index=False).sum()
In [4330]: res
Out[4330]:
ID A B
0 10 1 1
1 20 1 0
2 30 0 1
来源:https://stackoverflow.com/questions/65119376/groupby-and-aggregate-using-lambda-functions