问题
I have created model using Keras.
Here is the associated code. - https://github.com/CVxTz/ECG_Heartbeat_Classification/blob/master/code/baseline_mitbih.py
I could run it and get model accuracy.
IT works as expect for train and test data.
Now I Want to test with out sample record and get prediction result. How do I do this?
My code -
df_train = pd.read_csv("mitbih_train.csv", header=None)
df_train = df_train.sample(frac=1)
df_test = pd.read_csv("mitbih_test.csv", header=None)
Y = np.array(df_train[187].values).astype(np.int8)
X = np.array(df_train[list(range(187))].values)[..., np.newaxis]
Y_test = np.array(df_test[187].values).astype(np.int8)
X_test = np.array(df_test[list(range(187))].values)[..., np.newaxis]
def get_model():
nclass = 5
inp = Input(shape=(187, 1))
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(inp)
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = Dropout(rate=0.1)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = Dropout(rate=0.1)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = Dropout(rate=0.1)(img_1)
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = GlobalMaxPool1D()(img_1)
img_1 = Dropout(rate=0.2)(img_1)
dense_1 = Dense(64, activation=activations.relu, name="dense_1")(img_1)
dense_1 = Dense(64, activation=activations.relu, name="dense_2")(dense_1)
dense_1 = Dense(nclass, activation=activations.softmax, name="dense_3_mitbih")(dense_1)
model = models.Model(inputs=inp, outputs=dense_1)
opt = optimizers.Adam(0.001)
model.compile(optimizer=opt, loss=losses.sparse_categorical_crossentropy, metrics=['acc'])
model.summary()
return model
model = get_model()
file_path = "baseline_cnn_mitbih.h5"
model.load_weights(file_path)
pred_test = model.predict(X_test)
pred_test = np.argmax(pred_test, axis=-1)
f1 = f1_score(Y_test, pred_test, average="macro")
print("Test f1 score : %s "% f1)
acc = accuracy_score(Y_test, pred_test)
print("Test accuracy score : %s "% acc)
回答1:
You can pass a single array of 188 columns to predict the output.
model.predict(np.array([0,1,..,187]))
来源:https://stackoverflow.com/questions/58855234/predict-result-for-single-record-using-keras-model-predict