Pandas combine two dataframes based on time difference

混江龙づ霸主 提交于 2021-01-29 12:12:49

问题


I have two data frames that stores different types of medical information of patients. The common elements of both the data frames are the encounter ID (hadm_id), the time the information was recorded ((n|c)e_charttime).

One data frame (df_str) contains structured information such as vital signs and lab test values and values derived from these (such as change statistics over 24 hours). The other data frame (df_notes) contains a column with a clinical note recorded at a specified time for an encounter. Both these data frames contain multiple encounters, but the common element is the encounter ID (hadm_id).

Here are examples of the data frames for ONE encounter ID (hadm_id) with a subset of variables:

df_str
    hadm_id ce_charttime    hr  resp    magnesium   hr_24hr_mean
0   196673  2108-03-05 15:34:00 95.0    12.0    NaN 95.000000
1   196673  2108-03-05 16:00:00 85.0    11.0    NaN 90.000000
2   196673  2108-03-05 16:16:00 85.0    11.0    1.8 88.333333
3   196673  2108-03-05 17:00:00 109.0   12.0    1.8 93.500000
4   196673  2108-03-05 18:00:00 97.0    12.0    1.8 94.200000
5   196673  2108-03-05 19:00:00 99.0    16.0    1.8 95.000000
6   196673  2108-03-05 20:00:00 98.0    13.0    1.8 95.428571
7   196673  2108-03-05 21:00:00 97.0    14.0    1.8 95.625000
8   196673  2108-03-05 22:00:00 101.0   12.0    1.8 96.222222
9   196673  2108-03-05 23:00:00 97.0    13.0    1.8 96.300000
10  196673  2108-03-06 00:00:00 93.0    13.0    1.8 96.000000
11  196673  2108-03-06 01:00:00 89.0    12.0    1.8 95.416667
12  196673  2108-03-06 02:00:00 88.0    10.0    1.8 94.846154
13  196673  2108-03-06 03:00:00 87.0    12.0    1.8 94.285714
14  196673  2108-03-06 04:00:00 97.0    19.0    1.8 94.466667
15  196673  2108-03-06 05:00:00 95.0    11.0    1.8 94.500000
16  196673  2108-03-06 05:43:00 95.0    11.0    2.0 94.529412
17  196673  2108-03-06 06:00:00 103.0   17.0    2.0 95.000000
18  196673  2108-03-06 07:00:00 101.0   12.0    2.0 95.315789
19  196673  2108-03-06 08:00:00 103.0   20.0    2.0 95.700000
20  196673  2108-03-06 09:00:00 84.0    11.0    2.0 95.142857
21  196673  2108-03-06 10:00:00 89.0    11.0    2.0 94.863636
22  196673  2108-03-06 11:00:00 91.0    14.0    2.0 94.695652
23  196673  2108-03-06 12:00:00 85.0    10.0    2.0 94.291667
24  196673  2108-03-06 13:00:00 98.0    14.0    2.0 94.440000
25  196673  2108-03-06 14:00:00 100.0   18.0    2.0 94.653846
26  196673  2108-03-06 15:00:00 95.0    12.0    2.0 94.666667
27  196673  2108-03-06 16:00:00 96.0    20.0    2.0 95.076923
28  196673  2108-03-06 17:00:00 106.0   21.0    2.0 95.360000
df_notes
    hadm_id ne_charttime    note
0   196673  2108-03-05 16:54:00 Nursing\nNursing Progress Note\nPt is a 43 yo ...
1   196673  2108-03-05 17:54:00 Physician \nPhysician Resident Admission Note\...
2   196673  2108-03-05 18:09:00 Physician \nPhysician Resident Admission Note\...
3   196673  2108-03-06 06:11:00 Nursing\nNursing Progress Note\nPain control (...
4   196673  2108-03-06 08:06:00 Physician \nPhysician Resident Progress Note\n...
5   196673  2108-03-06 12:40:00 Nursing\nNursing Progress Note\nChief Complain...
6   196673  2108-03-06 13:01:00 Nursing\nNursing Progress Note\nPain control (...
7   196673  2108-03-06 17:09:00 Nursing\nNursing Transfer Note\nChief Complain...
8   196673  2108-03-06 17:12:00 Nursing\nNursing Transfer Note\nPain control (...
9   196673  2108-03-07 15:25:00 Radiology\nCHEST (PA & LAT)\n[**2108-3-7**] 3:...
10  196673  2108-03-07 18:34:00 Radiology\nCTA CHEST W&W/O C&RECONS, NON-CORON...
11  196673  2108-03-09 09:10:00 Radiology\nABDOMEN (SUPINE & ERECT)\n[**2108-3...
12  196673  2108-03-09 12:22:00 Radiology\nCT ABDOMEN W/CONTRAST\n[**2108-3-9*...
13  196673  2108-03-10 05:26:00 Radiology\nABDOMEN (SUPINE & ERECT)\n[**2108-3...
14  196673  2108-03-10 05:27:00 Radiology\nCHEST (PA & LAT)\n[**2108-3-10**] 5...

What I want to do is to combine both the data frames based on the time when that information was recorded. More specifically, for each row in df_notes, I want a corresponding row from df_str with ce_charttime <= ne_charttime.

As an example, the first row in df_notes has ne_charttime = 2108-03-05 16:54:00. There are three rows in df_str with record times less than this time: ce_charttime = 2108-03-05 15:34:00, ce_charttime = 2108-03-05 16:00:00, ce_charttime = 2108-03-05 16:16:00. The most recent of these is the row with ce_charttime = 2108-03-05 16:16:00. So in my resulting data frame, for ne_charttime = 2108-03-05 16:54:00, I will have hr = 85.0, resp = 11.0, magnesium = 1.8, hr_24hr_mean = 88.33.

Essentially, in this example the resulting data frame will look like this:

    hadm_id ne_charttime    note    hr  resp    magnesium   hr_24hr_mean
0   196673  2108-03-05 16:54:00 Nursing\nNursing Progress Note\nPt is a 43 yo ...   85.0    11.0    1.8 88.333333
1   196673  2108-03-05 17:54:00 Physician \nPhysician Resident Admission Note\...   109.0   12.0    1.8 93.500000
2   196673  2108-03-05 18:09:00 Physician \nPhysician Resident Admission Note\...   97.0    12.0    1.8 94.200000
3   196673  2108-03-06 06:11:00 Nursing\nNursing Progress Note\nPain control (...   103.0   17.0    2.0 95.000000
4   196673  2108-03-06 08:06:00 Physician \nPhysician Resident Progress Note\n...   103.0   20.0    2.0 95.700000
5   196673  2108-03-06 12:40:00 Nursing\nNursing Progress Note\nChief Complain...   85.0    10.0    2.0 94.291667
6   196673  2108-03-06 13:01:00 Nursing\nNursing Progress Note\nPain control (...   98.0    14.0    2.0 94.440000
7   196673  2108-03-06 17:09:00 Nursing\nNursing Transfer Note\nChief Complain...   106.0   21.0    2.0 95.360000
8   196673  2108-03-06 17:12:00 Nursing\nNursing Transfer Note\nPain control (...   NaN NaN NaN NaN
9   196673  2108-03-07 15:25:00 Radiology\nCHEST (PA & LAT)\n[**2108-3-7**] 3:...   NaN NaN NaN NaN
10  196673  2108-03-07 18:34:00 Radiology\nCTA CHEST W&W/O C&RECONS, NON-CORON...   NaN NaN NaN NaN
11  196673  2108-03-09 09:10:00 Radiology\nABDOMEN (SUPINE & ERECT)\n[**2108-3...   NaN NaN NaN NaN
12  196673  2108-03-09 12:22:00 Radiology\nCT ABDOMEN W/CONTRAST\n[**2108-3-9*...   NaN NaN NaN NaN
13  196673  2108-03-10 05:26:00 Radiology\nABDOMEN (SUPINE & ERECT)\n[**2108-3...   NaN NaN NaN NaN
14  196673  2108-03-10 05:27:00 Radiology\nCHEST (PA & LAT)\n[**2108-3-10**] 5...   NaN NaN NaN NaN

The resulting data frame will be of the same length as df_notes. I have been able to come with a very inefficient piece of code using for loops and explicit indexing to get this result:

cols = list(df_str.columns[2:])

final_df = df_notes.copy()
for col in cols:
  final_df[col] = np.nan

idx = 0
for i, note_row in final_df.iterrows():
  ne = note_row['ne_charttime']
  for j, str_row in df_str.iterrows():
    ce = str_row['ce_charttime']
    if ne < ce:
      idx += 1
      for col in cols:
        final_df.iloc[i, final_df.columns.get_loc(col)] = df_str.iloc[j-1][col]
      break

for col in cols:
  final_df.iloc[idx, final_df.columns.get_loc(col)] = df_str.iloc[-1][col]

This piece of code is bad because it is very inefficient and while it may work for this example, in my example dataset, I have over 30 different columns of structured variables, and over 10,000 encounters.

EDIT-2: @Stef has provided an excellent answer which seems to work and replace my elaborate loopy code with a single line (amazing). However, while that works for this particular example, I am running into problems when I apply it to a bigger subset which includes multiple encounters. For example, consider the following example:

df_str.shape, df_notes.shape
((217, 386), (35, 4))

df_notes[['hadm_id', 'ne_charttime']]
    hadm_id ne_charttime
0   100104  2201-06-21 20:00:00
1   100104  2201-06-21 22:51:00
2   100104  2201-06-22 05:00:00
3   100104  2201-06-23 04:33:00
4   100104  2201-06-23 12:59:00
5   100104  2201-06-24 05:15:00
6   100372  2115-12-20 02:29:00
7   100372  2115-12-21 10:15:00
8   100372  2115-12-22 13:05:00
9   100372  2115-12-25 17:16:00
10  100372  2115-12-30 10:58:00
11  100372  2115-12-30 13:07:00
12  100372  2115-12-30 14:16:00
13  100372  2115-12-30 22:34:00
14  100372  2116-01-03 09:10:00
15  100372  2116-01-07 11:08:00
16  100975  2126-03-02 06:06:00
17  100975  2126-03-02 17:44:00
18  100975  2126-03-03 05:36:00
19  100975  2126-03-03 18:27:00
20  100975  2126-03-04 05:29:00
21  100975  2126-03-04 10:48:00
22  100975  2126-03-04 16:42:00
23  100975  2126-03-05 22:12:00
24  100975  2126-03-05 23:01:00
25  100975  2126-03-06 11:02:00
26  100975  2126-03-06 13:38:00
27  100975  2126-03-08 13:39:00
28  100975  2126-03-11 10:41:00
29  101511  2199-04-30 09:29:00
30  101511  2199-04-30 09:53:00
31  101511  2199-04-30 18:06:00
32  101511  2199-05-01 08:28:00
33  111073  2195-05-01 01:56:00
34  111073  2195-05-01 21:49:00

This example has 5 encounters. The dataframe is sorted by hadm_id and within each hadm_id, ne_charttime is sorted. However, the column ne_charttime by itself is NOT sorted as seen from row 0 ce_charttime=2201-06-21 20:00:00 and row 6 ne_charttime=2115-12-20 02:29:00. When I try to do a merge_asof, I get the following error:

ValueError: left keys must be sorted. Is this because of the fact that ne_charttime column is not sorted? If so, how do I rectify this while maintaining the integrity of the encounter ID group?

EDIT-1: I was able to loop over the encounters as well:

cols = list(dev_str.columns[1:]) # get the cols to merge (everything except hadm_id)
final_dfs = [] 

grouped = dev_notes.groupby('hadm_id') # get groups of encounter ids
for name, group in grouped:
  final_df = group.copy().reset_index(drop=True) # make a copy of notes for that encounter
  for col in cols:
    final_df[col] = np.nan # set the values to nan

  idx = 0 # index to track the final row in the given encounter
  for i, note_row in final_df.iterrows():
    ne = note_row['ne_charttime']
    sub = dev_str.loc[(dev_str['hadm_id'] == name)].reset_index(drop=True) # get the df corresponding to the ecounter
    for j, str_row in sub.iterrows():
      ce = str_row['ce_charttime']
      if ne < ce: # if the variable charttime < note charttime
        idx += 1

        # grab the previous values for the variables and break
        for col in cols:
          final_df.iloc[i, final_df.columns.get_loc(col)] = sub.iloc[j-1][col]          
        break               

  # get the last value in the df for the variables
  for col in cols:
    final_df.iloc[idx, final_df.columns.get_loc(col)] = sub.iloc[-1][col]

  final_dfs.append(final_df) # append the df to the list

# cat the list to get final df and reset index
final_df = pd.concat(final_dfs)
final_df.reset_index(inplace=True, drop=True)

Again this very inefficient but does the job.

Is there a better way to achieve what I want? Any help is appreciated.

Thanks.


回答1:


You can use merge_asof (both dataframes must be sorted by the columns you're merging them on, which is already the case in your example):

final_df = pd.merge_asof(df_notes, df_str, left_on='ne_charttime', right_on='ce_charttime', by='hadm_id')

Result:

    hadm_id        ne_charttime                                               note        ce_charttime     hr  resp  magnesium  hr_24hr_mean
0    196673 2108-03-05 16:54:00  Nursing\nNursing Progress Note\nPt is a 43 yo ... 2108-03-05 16:16:00   85.0  11.0        1.8     88.333333
1    196673 2108-03-05 17:54:00  Physician \nPhysician Resident Admission Note\... 2108-03-05 17:00:00  109.0  12.0        1.8     93.500000
2    196673 2108-03-05 18:09:00  Physician \nPhysician Resident Admission Note\... 2108-03-05 18:00:00   97.0  12.0        1.8     94.200000
3    196673 2108-03-06 06:11:00  Nursing\nNursing Progress Note\nPain control (... 2108-03-06 06:00:00  103.0  17.0        2.0     95.000000
4    196673 2108-03-06 08:06:00  Physician \nPhysician Resident Progress Note\n... 2108-03-06 08:00:00  103.0  20.0        2.0     95.700000
5    196673 2108-03-06 12:40:00  Nursing\nNursing Progress Note\nChief Complain... 2108-03-06 12:00:00   85.0  10.0        2.0     94.291667
6    196673 2108-03-06 13:01:00  Nursing\nNursing Progress Note\nPain control (... 2108-03-06 13:00:00   98.0  14.0        2.0     94.440000
7    196673 2108-03-06 17:09:00  Nursing\nNursing Transfer Note\nChief Complain... 2108-03-06 17:00:00  106.0  21.0        2.0     95.360000
8    196673 2108-03-06 17:12:00  Nursing\nNursing Transfer Note\nPain control (... 2108-03-06 17:00:00  106.0  21.0        2.0     95.360000
9    196673 2108-03-07 15:25:00  Radiology\nCHEST (PA & LAT)\n[**2108-3-7**] 3:... 2108-03-06 17:00:00  106.0  21.0        2.0     95.360000
10   196673 2108-03-07 18:34:00  Radiology\nCTA CHEST W&W/O C&RECONS, NON-CORON... 2108-03-06 17:00:00  106.0  21.0        2.0     95.360000
11   196673 2108-03-09 09:10:00  Radiology\nABDOMEN (SUPINE & ERECT)\n[**2108-3... 2108-03-06 17:00:00  106.0  21.0        2.0     95.360000
12   196673 2108-03-09 12:22:00  Radiology\nCT ABDOMEN W/CONTRAST\n[**2108-3-9*... 2108-03-06 17:00:00  106.0  21.0        2.0     95.360000
13   196673 2108-03-10 05:26:00  Radiology\nABDOMEN (SUPINE & ERECT)\n[**2108-3... 2108-03-06 17:00:00  106.0  21.0        2.0     95.360000
14   196673 2108-03-10 05:27:00  Radiology\nCHEST (PA & LAT)\n[**2108-3-10**] 5... 2108-03-06 17:00:00  106.0  21.0        2.0     95.360000

PS: This gives you the correct result for all rows. There's a logical flaw in your code: you look for the first time ce_charttime > ne_charttime and then take the previous row. If there's no such time, you'll never have the chance to take the previous row, hence the NaNs in your result table starting from row 8.

PPS: This includes ce_charttime in the final dataframe. You can replace it by a column of how old the information is and/or remove it:

final_df['info_age'] = final_df.ne_charttime - final_df.ce_charttime
final_df = final_df.drop(columns='ce_charttime')

UPDATE for EDIT-2: As I wrote at the very beginning, repeated in the comments and as the docs clearly states: both ce_charttime and ne_charttime must be sorted (hadm_id need not be sorted). If this condition is not met, you'll have to (temporarily) sort your dataframes as required. See the following example:

import pandas as pd, string

df_str = pd.DataFrame( {'hadm_id': pd.np.tile([111111, 222222],10), 'ce_charttime': pd.date_range('2019-10-01 00:30', periods=20, freq='30T'), 'hr': pd.np.random.randint(80,120,20)})
df_notes = pd.DataFrame( {'hadm_id': pd.np.tile([111111, 222222],3), 'ne_charttime': pd.date_range('2019-10-01 00:45', periods=6, freq='40T'), 'note': [''.join(pd.np.random.choice(list(string.ascii_letters), 10)) for _ in range(6)]}).sort_values('hadm_id')

final_df = pd.merge_asof(df_notes.sort_values('ne_charttime'), df_str, left_on='ne_charttime', right_on='ce_charttime', by='hadm_id').sort_values(['hadm_id', 'ne_charttime'])

print(df_str); print(df_notes); print(final_df)

Output:

    hadm_id        ce_charttime   hr
0    111111 2019-10-01 00:30:00  118
1    222222 2019-10-01 01:00:00   93
2    111111 2019-10-01 01:30:00   92
3    222222 2019-10-01 02:00:00   86
4    111111 2019-10-01 02:30:00   88
5    222222 2019-10-01 03:00:00   86
6    111111 2019-10-01 03:30:00  106
7    222222 2019-10-01 04:00:00   91
8    111111 2019-10-01 04:30:00  109
9    222222 2019-10-01 05:00:00   95
10   111111 2019-10-01 05:30:00  113
11   222222 2019-10-01 06:00:00   92
12   111111 2019-10-01 06:30:00  104
13   222222 2019-10-01 07:00:00   83
14   111111 2019-10-01 07:30:00  114
15   222222 2019-10-01 08:00:00   98
16   111111 2019-10-01 08:30:00  110
17   222222 2019-10-01 09:00:00   89
18   111111 2019-10-01 09:30:00   98
19   222222 2019-10-01 10:00:00  109
   hadm_id        ne_charttime        note
0   111111 2019-10-01 00:45:00  jOcRWVdPDF
2   111111 2019-10-01 02:05:00  mvScJNrwra
4   111111 2019-10-01 03:25:00  FBAFbJYflE
1   222222 2019-10-01 01:25:00  ilNuInOsYZ
3   222222 2019-10-01 02:45:00  ysyolaNmkV
5   222222 2019-10-01 04:05:00  wvowGGETaP
   hadm_id        ne_charttime        note        ce_charttime   hr
0   111111 2019-10-01 00:45:00  jOcRWVdPDF 2019-10-01 00:30:00  118
2   111111 2019-10-01 02:05:00  mvScJNrwra 2019-10-01 01:30:00   92
4   111111 2019-10-01 03:25:00  FBAFbJYflE 2019-10-01 02:30:00   88
1   222222 2019-10-01 01:25:00  ilNuInOsYZ 2019-10-01 01:00:00   93
3   222222 2019-10-01 02:45:00  ysyolaNmkV 2019-10-01 02:00:00   86
5   222222 2019-10-01 04:05:00  wvowGGETaP 2019-10-01 04:00:00   91



回答2:


You can do full merge and then filter with query:

df_notes.merge(df_str, on=hadm_id).query('ce_charttime <= ne_charttime')


来源:https://stackoverflow.com/questions/58238564/pandas-combine-two-dataframes-based-on-time-difference

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!