问题
Having the following DF:
group_id                timestamp
       A  2020-09-29 06:00:00 UTC
       A  2020-09-29 08:00:00 UTC
       A  2020-09-30 09:00:00 UTC
       B  2020-09-01 04:00:00 UTC
       B  2020-09-01 06:00:00 UTC
I would like to count the deltas between records using all groups, not counting deltas between groups. Result for the above example:
delta       count
    2           2
   25           1
Explanation: In group A the deltas are
06:00:00 -> 08:00:00 (2 hours)
08:00:00 -> 09:00:00 on the next day (25 hours)
And in group B:
04:00:00 -> 06:00:00 (2 hours)
How can I achieve this using Python Pandas?
回答1:
Use DataFrameGroupBy.diff for differencies per groups, convert to seconds by Series.dt.total_seconds, divide by 3600 for hours and last count values by Series.value_counts with convert Series to 2 columns DataFrame:
df1 = (df.groupby("group_id")['timestamp']
        .diff()
        .dt.total_seconds()
        .div(3600)
        .value_counts()
        .rename_axis('delta')
        .reset_index(name='count'))
print (df1)
   delta  count
0    2.0      2
1   25.0      1
回答2:
Code
df_out = df.groupby("group_id").diff().groupby("timestamp").size()
# convert to dataframe
df_out = df_out.to_frame().reset_index().rename(columns={"timestamp": "delta", 0: "count"})
Result
print(df_out)
            delta  count
0 0 days 02:00:00      2
1 1 days 01:00:00      1
The NaT's (missing values) produced by groupby-diff were ignored automatically.
To represent timedelta in hours, just call total_seconds() method.
df_out["delta"] = df_out["delta"].dt.total_seconds() / 3600
print(df_out)
   delta  count
0    2.0      2
1   25.0      1
来源:https://stackoverflow.com/questions/64966109/python-pandas-group-by-time-intervals