1.The Mathematical Knowledge Needed For Machine Learning
algorithems |
Mathematics |
Bias classifier |
random variable,Bias formula,Independence of random variables,Normal distribution,Maximum likelihood estimation |
decision tree |
probability,entropy,Gini coefficient |
KNN algorithems |
distance function |
Main component analysis |
Covariance Matrix,Scatter Matrix, |
manifold learning |
manifold,optimisation,Geodesic line,Geodesic distance,chart,Eigenvalue and Characteristic matrix |
SVM |
The distance from the point to the plane,Slater condition,Strong Dual, |
logistic |
probality,Discrete random variable,lagrange duality,KKT condition,Convex optimization,kernel function,Mercer Condition |
logistic |
probability,random variable,Maximum likelihood estimation,Gradient descent method,Convex optimization,Newton method |
Random Forest |
sampling,variance |
AdaBoolslt algorithm |
probability,Random variance,extreme value theory,Mathematical expectation,Newton method |
Hidden Markov model |
probability,Discrete random variable, |
The Unknown Word
scatter |
['skaete]散开 |
formular |
['fo:rmjule]公式 |
likelihood estimation |
似然估计 |
entropy |
['entrepi]熵 |
covariance |
协方差 |
manifold |
流行 |
optimisation |
优化[optimai'seition] |
geodesics |
[dgi:ou'desics]测地线 |
geodesic |
[dgi:ou'desik]测量的 |
eigenvalue |
['aidjen vaelju:]特征值 |
discrete |
离散的,分布的 |
logistic |
逻辑的[lo'dgistik] |
extreme value theory |
极值定理 |
convex |
凸的['konveks] |
Random Forest |
sampling,variance |
discrete |
分散的[di'skrit] |
转载于:https://www.cnblogs.com/hugeng007/p/9380173.html
来源:CSDN
作者:weixin_30933531
链接:https://blog.csdn.net/weixin_30933531/article/details/95058609