Pandas - Column expansion of List of Dictionary - How to Optimise?

大兔子大兔子 提交于 2020-12-31 06:50:13

问题


I have a dataframe test with 3 columns id, name, value the following column test['values']. A sample of how test looks is:

    name                  values
0   impressions           [{'value': 17686, 'end_time': '2018-06-12T07:0...
1   reach                 [{'value': 6294, 'end_time': '2018-06-12T07:00...
2   follower_count        [{'value': 130, 'end_time': '2018-06-12T07:00:...
3   email_contacts        [{'value': 1, 'end_time': '2018-06-12T07:00:00...
4   phone_call_clicks     [{'value': 0, 'end_time': '2018-06-12T07:00:00...
5   text_message_clicks   [{'value': 0, 'end_time': '2018-06-12T07:00:00...
6   get_directions_clicks [{'value': 0, 'end_time': '2018-06

The test value cells look something like this:

[{'end_time': '2018-06-12T07:00:00+0000', 'value': 17686},
 {'end_time': '2018-06-13T07:00:00+0000', 'value': 4064}]

I can expand it by doing the following:

test[['Values 1', 'Values 2']] = test['values'].apply(pd.Series)
test[['Date 1', 'Values 1']] = test['Values 1'].apply(pd.Series)
test[['Date 2', 'Values 2']] = test['Values 2'].apply(pd.Series)
test.drop(['values'], axis=1, inplace=True)

The result is something like this:

id                          name        Values 1    Values 2    Date 1  Date 2
/insights/impressions/day   impressions 17686   4064    2018-06-12T07:00:00+0000    2018-06-13T07:00:00+0000
/insights/reach/day reach   6294    2085    2018-06-12T07:00:00+0000    2018-06-13T07:00:00+0000
/insights/follower_count/day    follower_count  130 37  2018-06-12T07:00:00+0000    2018-06-13T07:00:00+0000

I was wondering if:

a. There's a faster way to expand the list of dictionaries

b. There's a way to unpivot the data so that values 1 and values 2 are on one column. And Date 1 and Date 2 are in another column


回答1:


If input data are jsons, better is use json_normalize.

j = [{'description': 'Total number 1', 'id': 'a', 'name': 'impressions', 'period': 'day', 'title': 'Impressions', 'values': [{'end_time': '2018-06-12T07:00:00+0000', 'value': 17686}, {'end_time': '2018-06-13T07:00:00+0000', 'value': 4064}]},
      {'description': 'fn', 'id': 'b', 'name': 'impressions', 'period': 'day', 'title': 'Impressions', 'values': [{'end_time': '2018-06-12T07:00:00+0000', 'value': 17686}, {'end_time': '2018-06-13T07:00:00+0000', 'value': 4064}]}]

from pandas.io.json import json_normalize

df = json_normalize(j, 'values')
print (df)
                   end_time  value
0  2018-06-12T07:00:00+0000  17686
1  2018-06-13T07:00:00+0000   4064
2  2018-06-12T07:00:00+0000  17686
3  2018-06-13T07:00:00+0000   4064

But if need also add original columns:

from pandas.io.json import json_normalize


df = json_normalize(j, 'values', ['description', 'id', 'name', 'period', 'title'])
print (df)
                   end_time  value     description id         name period  \
0  2018-06-12T07:00:00+0000  17686  Total number 1  a  impressions    day   
1  2018-06-13T07:00:00+0000   4064  Total number 1  a  impressions    day   
2  2018-06-12T07:00:00+0000  17686              fn  b  impressions    day   
3  2018-06-13T07:00:00+0000   4064              fn  b  impressions    day   

         title  
0  Impressions  
1  Impressions  
2  Impressions  
3  Impressions  

First solution:

test = pd.DataFrame({
    'name':['a', 'b', 'n'],
    'values':[[{'end_time': '2018-06-12T07:00:00+0000', 'value': 17686},
 {'end_time': '2018-06-13T07:00:00+0000', 'value': 4064}],[{'end_time': '2018-06-12T07:00:00+0000', 'value': 17686},
 {'end_time': '2018-06-13T07:00:00+0000', 'value': 4064}],[{'end_time': '2018-06-12T07:00:00+0000', 'value': 17686},
 {'end_time': '2018-06-13T07:00:00+0000', 'value': 4064}]]
})


df =  (pd.concat([pd.DataFrame(x) for x in test['values']], axis=1, keys=(1, 2))
        .stack(0)
        .reset_index(level=1, drop=True))
print (df)
                   end_time  value
0  2018-06-12T07:00:00+0000  17686
0  2018-06-12T07:00:00+0000  17686
1  2018-06-13T07:00:00+0000   4064
1  2018-06-13T07:00:00+0000   4064

df = test.join(df)
print (df)
  name                                             values  \
0    a  [{'end_time': '2018-06-12T07:00:00+0000', 'val...   
0    a  [{'end_time': '2018-06-12T07:00:00+0000', 'val...   
1    b  [{'end_time': '2018-06-12T07:00:00+0000', 'val...   
1    b  [{'end_time': '2018-06-12T07:00:00+0000', 'val...   
2    n  [{'end_time': '2018-06-12T07:00:00+0000', 'val...   

                   end_time    value  
0  2018-06-12T07:00:00+0000  17686.0  
0  2018-06-12T07:00:00+0000  17686.0  
1  2018-06-13T07:00:00+0000   4064.0  
1  2018-06-13T07:00:00+0000   4064.0  
2                       NaN      NaN  



回答2:


You can create both column value and end_time at once with two apply and stack (plus set_index, reset_index):

(test.set_index('name')['values']
       .apply(pd.Series).stack()
         .apply(pd.Series).reset_index().drop('level_1',1))

the output is like this:

          name                  end_time  value
0  impressions  2018-06-12T07:00:00+0000  17686
1  impressions  2018-06-13T07:00:00+0000   4064


来源:https://stackoverflow.com/questions/50839737/pandas-column-expansion-of-list-of-dictionary-how-to-optimise

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!